3. Find the divergence of U3 -e3 U1U2 U1 U2 -ēj + e2 + F 2uzu3 U3 if hi = U1U2, h3 = Uz. = U1, h2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Please help with the following solution. This is Vector Analysis (Vector Calculus). The second attachment is how the book defines divergence. 

3. Find the divergence of

\[
\mathbf{F} = \frac{u_1}{2u_2u_3}\mathbf{e_1} + \frac{u_2}{u_3}\mathbf{e_2} + \frac{u_3}{u_1u_2}\mathbf{e_3}
\]

if

\[
h_1 = u_1, \quad h_2 = u_1u_2, \quad h_3 = u_3.
\]
Transcribed Image Text:3. Find the divergence of \[ \mathbf{F} = \frac{u_1}{2u_2u_3}\mathbf{e_1} + \frac{u_2}{u_3}\mathbf{e_2} + \frac{u_3}{u_1u_2}\mathbf{e_3} \] if \[ h_1 = u_1, \quad h_2 = u_1u_2, \quad h_3 = u_3. \]
**Mathematical Formulas for Divergence, Curl, and Laplacian**

### Divergence
The divergence of a vector field \( \mathbf{F} \) is given by:

\[
\nabla \cdot \mathbf{F} = \frac{1}{h_1 h_2 h_3} \left[ \frac{\partial}{\partial u_1}(F_1 h_2 h_3) + \frac{\partial}{\partial u_2}(F_2 h_1 h_3) + \frac{\partial}{\partial u_3}(F_3 h_1 h_2) \right]
\]

### Curl
The curl of a vector field \( \mathbf{F} \) is represented as:

\[
\nabla \times \mathbf{F} = \frac{1}{h_1 h_2 h_3}
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
h_1 e_1 & h_2 e_2 & h_3 e_3 \\
\frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\
F_1 h_1 & F_2 h_2 & F_3 h_3
\end{vmatrix}
\]

### Laplacian
The Laplacian of a scalar function \( f \) is expressed as:

\[
\nabla^2 f = \frac{1}{h_1 h_2 h_3} \left[
\frac{\partial}{\partial u_1}\left(\frac{h_2 h_3}{h_1} \frac{\partial f}{\partial u_1}\right) + 
\frac{\partial}{\partial u_2}\left(\frac{h_3 h_1}{h_2} \frac{\partial f}{\partial u_2}\right) +
\frac{\partial}{\partial u_3}\left(\frac{h_1 h_2}{h_3} \frac{\partial f}{\partial u_3}\right)
\right]
\]

---

### Cylindrical Coordinates
- **Displacement Vector**: \( d\mathbf{R} = dp \, e
Transcribed Image Text:**Mathematical Formulas for Divergence, Curl, and Laplacian** ### Divergence The divergence of a vector field \( \mathbf{F} \) is given by: \[ \nabla \cdot \mathbf{F} = \frac{1}{h_1 h_2 h_3} \left[ \frac{\partial}{\partial u_1}(F_1 h_2 h_3) + \frac{\partial}{\partial u_2}(F_2 h_1 h_3) + \frac{\partial}{\partial u_3}(F_3 h_1 h_2) \right] \] ### Curl The curl of a vector field \( \mathbf{F} \) is represented as: \[ \nabla \times \mathbf{F} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ h_1 e_1 & h_2 e_2 & h_3 e_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ F_1 h_1 & F_2 h_2 & F_3 h_3 \end{vmatrix} \] ### Laplacian The Laplacian of a scalar function \( f \) is expressed as: \[ \nabla^2 f = \frac{1}{h_1 h_2 h_3} \left[ \frac{\partial}{\partial u_1}\left(\frac{h_2 h_3}{h_1} \frac{\partial f}{\partial u_1}\right) + \frac{\partial}{\partial u_2}\left(\frac{h_3 h_1}{h_2} \frac{\partial f}{\partial u_2}\right) + \frac{\partial}{\partial u_3}\left(\frac{h_1 h_2}{h_3} \frac{\partial f}{\partial u_3}\right) \right] \] --- ### Cylindrical Coordinates - **Displacement Vector**: \( d\mathbf{R} = dp \, e
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Vector Addition and Scalar Multiplication
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,