Find the scale factors for U1u3 x = U3, y = U1U3 + U2 = Z U2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Please help with the solution to the following problem. The book is very hard to follow. This is Vector Analysis (Vector Calculus). The second attachment is how the textbook defines scale factors.  

2. Find the scale factors for

\[ x = u_3, \quad y = u_1 u_3 + u_2, \quad z = \frac{u_1 u_3}{u_2} \]
Transcribed Image Text:2. Find the scale factors for \[ x = u_3, \quad y = u_1 u_3 + u_2, \quad z = \frac{u_1 u_3}{u_2} \]
**General Orthogonal Curvilinear Coordinates**

**Scale Factors:**

\[
h_i = \left| \frac{\partial R}{\partial u_i} \right| = \frac{1}{\sqrt{u_i}} \quad (i = 1, 2, 3)
\]

**Displacement Vector:**

\[
d\mathbf{R} = h_1 du_1 \mathbf{e}_1 + h_2 du_2 \mathbf{e}_2 + h_3 du_3 \mathbf{e}_3
\]

**Arc Length:**

\[
ds = \left( h_1^2 du_1^2 + h_2^2 du_2^2 + h_3^2 du_3^2 \right)^{1/2}
\]

**Volume Element:**

\[
dV = h_1 h_2 h_3 \, du_1 \, du_2 \, du_3
\]

**Gradient:**

\[
\nabla f = \frac{1}{h_1} \frac{\partial f}{\partial u_1} \mathbf{e}_1 + \frac{1}{h_2} \frac{\partial f}{\partial u_2} \mathbf{e}_2 + \frac{1}{h_3} \frac{\partial f}{\partial u_3} \mathbf{e}_3
\]
Transcribed Image Text:**General Orthogonal Curvilinear Coordinates** **Scale Factors:** \[ h_i = \left| \frac{\partial R}{\partial u_i} \right| = \frac{1}{\sqrt{u_i}} \quad (i = 1, 2, 3) \] **Displacement Vector:** \[ d\mathbf{R} = h_1 du_1 \mathbf{e}_1 + h_2 du_2 \mathbf{e}_2 + h_3 du_3 \mathbf{e}_3 \] **Arc Length:** \[ ds = \left( h_1^2 du_1^2 + h_2^2 du_2^2 + h_3^2 du_3^2 \right)^{1/2} \] **Volume Element:** \[ dV = h_1 h_2 h_3 \, du_1 \, du_2 \, du_3 \] **Gradient:** \[ \nabla f = \frac{1}{h_1} \frac{\partial f}{\partial u_1} \mathbf{e}_1 + \frac{1}{h_2} \frac{\partial f}{\partial u_2} \mathbf{e}_2 + \frac{1}{h_3} \frac{\partial f}{\partial u_3} \mathbf{e}_3 \]
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Vector Addition and Scalar Multiplication
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,