3- a) The distance to Alpha Centauri (the nearest large star to Earth) is 4.37 Ly (Light Years). What is the distance in miles (given that one Ly = 5.88 x 1012 miles?) b) Present rocket ship speeds are roughly 100,000 miles per hour, which is the same as 8.766 x 108 miles per year. At this speed, and using the distance you calculated in (a), how many years would it take to travel to Alpha Centauri?
3- a) The distance to Alpha Centauri (the nearest large star to Earth) is 4.37 Ly (Light Years). What is the distance in miles (given that one Ly = 5.88 x 1012 miles?) b) Present rocket ship speeds are roughly 100,000 miles per hour, which is the same as 8.766 x 108 miles per year. At this speed, and using the distance you calculated in (a), how many years would it take to travel to Alpha Centauri?
University Physics Volume 3
17th Edition
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:William Moebs, Jeff Sanny
Chapter11: Particle Physics And Cosmology
Section: Chapter Questions
Problem 69P: Show that the velocity of a star orbiting its galaxy in a circular oibit is inversely proportional...
Related questions
Question
3- a) The distance to Alpha Centauri (the nearest large star to Earth) is 4.37 Ly (Light Years). What is the distance in miles (given that one Ly = 5.88 x 1012 miles?)
b) Present rocket ship speeds are roughly 100,000 miles per hour, which is the same as 8.766 x 108 miles per year. At this speed, and using the distance you calculated in (a), how many years would it take to travel to Alpha Centauri?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![University Physics Volume 3](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
![Inquiry into Physics](https://www.bartleby.com/isbn_cover_images/9781337515863/9781337515863_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
![University Physics Volume 3](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
![Inquiry into Physics](https://www.bartleby.com/isbn_cover_images/9781337515863/9781337515863_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
![Principles of Physics: A Calculus-Based Text](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![College Physics](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning