20% 20% 4j40 (10 j80) (10% at 100 MVA (10% at 100 MVA F1 l'a XT =40% XLT 20% XHL 10% 110/220 kV Figure 4.25 System diagram for Problem 4.10
Load flow analysis
Load flow analysis is a study or numerical calculation of the power flow of power in steady-state conditions in any electrical system. It is used to determine the flow of power (real and reactive), voltage, or current in a system under any load conditions.
Nodal Matrix
The nodal matrix or simply known as admittance matrix, generally in engineering term it is called Y Matrix or Y bus, since it involve matrices so it is also referred as a n into n order matrix that represents a power system with n number of buses. It shows the buses' nodal admittance in a power system. The Y matrix is rather sparse in actual systems with thousands of buses. In the power system the transmission cables connect each bus to only a few other buses. Also the important data that one needs for have a power flow study is the Y Matrix.
Types of Buses
A bus is a type of system of communication that transfers data between the components inside a computer or between two or more computers. With multiple hardware connections, the earlier buses were parallel electrical wires but the term "bus" is now used for any type of physical arrangement which provides the same type of logical functions similar to the parallel electrical bus. Both parallel and bit connections are used by modern buses. They can be wired either electrical parallel or daisy chain topology or are connected by hubs which are switched same as in the case of Universal Serial Bus or USB.
You are given that the system shown in Figure 4.25 has a 110/220 kV autotransformer. The positive- and zero-sequence impedances in ohms or percent are as shown in the figure, the zero-sequence impedances being in parentheses. Assume that the low- voltage system is solidly grounded. For a phase-a-to-ground fault at the midpoint of the transmission line, calculate the transformer current In in the neutral and the phase a currents Ia and I'a on the high and low sides of the transformer. If the source on the low-voltage side is to be grounded through a reactance, determine the value of the grounding reactance for which the transformer neutral current becomes zero. As the grounding reactance changes around this value, the direction of the neutral current will reverse, and will affect the polarizing capability of the neutral current for ground faults on the high side. Can faults on the low-voltage side ever cause the neutral current to reverse?
Trending now
This is a popular solution!
Step by step
Solved in 10 steps with 10 images