2. Hermite Polynomials The generating function of the Hermite polynomials is given by ∞ 2-s²+2sy = Σ H₂(y): n! sn n=0 a) Use this to derive analytic forms for Ho(y), H₁(y), and H₂(y). b) Proof that •+∞ е [ dy e - a² + 2ªve-l²+2tv e-v² = √ire ²01 c) Use Eqs. (1) and (2) to derive the orthogonality relation •+∞ dy Hn(y) Hm(y)e¯y² = √√2¹n!dnm.
2. Hermite Polynomials The generating function of the Hermite polynomials is given by ∞ 2-s²+2sy = Σ H₂(y): n! sn n=0 a) Use this to derive analytic forms for Ho(y), H₁(y), and H₂(y). b) Proof that •+∞ е [ dy e - a² + 2ªve-l²+2tv e-v² = √ire ²01 c) Use Eqs. (1) and (2) to derive the orthogonality relation •+∞ dy Hn(y) Hm(y)e¯y² = √√2¹n!dnm.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![2. Hermite Polynomials
The generating function of the Hermite polynomials is given by
+∞
a) Use this to derive analytic forms for Ho(y), H₁(y), and H₂(y).
b) Proof that
is
•+∞
dy
8
²+2sy
e
- Σ H₂ (y) 77.
=
n!
n=0
+2sy
_t²+2ty e
-y²
c) Use Eqs. (1) and (2) to derive the orthogonality relation
=
√πe²st
dy Hn(y)Hm(y)e¯y² = √√π2ªn!dnm.
with
d) In class we have shown that the eigenfunctions of the harmonic oscillator are given by
un (y) = CnH₂(y)e-²1 y ²
Use Eq. (3) to determine the constant Cn therein.
y =
Μω
ħ
-X.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9beb1928-0586-4f1a-bfc4-c5d1d5ac543d%2F664e2928-317a-4e9b-8dc7-68c2d9f6978d%2Fkt0pj8_processed.jpeg&w=3840&q=75)
Transcribed Image Text:2. Hermite Polynomials
The generating function of the Hermite polynomials is given by
+∞
a) Use this to derive analytic forms for Ho(y), H₁(y), and H₂(y).
b) Proof that
is
•+∞
dy
8
²+2sy
e
- Σ H₂ (y) 77.
=
n!
n=0
+2sy
_t²+2ty e
-y²
c) Use Eqs. (1) and (2) to derive the orthogonality relation
=
√πe²st
dy Hn(y)Hm(y)e¯y² = √√π2ªn!dnm.
with
d) In class we have shown that the eigenfunctions of the harmonic oscillator are given by
un (y) = CnH₂(y)e-²1 y ²
Use Eq. (3) to determine the constant Cn therein.
y =
Μω
ħ
-X.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)