2. Consider the reaction that occurs when a CIO2 solution and a solution containing hydroxide ions (OH) are mixed at 0°C, shown in the following equation. 2CIO2(aq) + 2OH (aq) Cl03 (aq) + CIO2 (aq) + H2O (1) When solutions containing CIO2 and OH- in various concentrations were mixed at 0 oC, the following rate data were obtained: Determination Initial concentration Initial concentration of Initial rate for formation number of Cl02, mol/L OH, mol/L of CIO3 mol/Ls 1 1.25x10-2 1.30x10-3 2.33x104 2.50x102 1.30x10-3 9.34x104 3 2.50x10-2 2.60x103 1.87x10-3 a) Use the method of initial rates to find the order of the reaction with respect to CIO2 and with respect to OH. Write the rate equation for the reaction of CIO2 and OH at 0°C. b) Calculate the rate constant, k, for the reaction of ClO2 and OH at 0°C. c) Calculate the reaction rate for the reaction CIO2 and OH at 0°C when the initial CIO2 and OH concentrations are 8.25x10-3 mol/L and 5.35x 102 mol/L, respectively.
Thermochemistry
Thermochemistry can be considered as a branch of thermodynamics that deals with the connections between warmth, work, and various types of energy, formed because of different synthetic and actual cycles. Thermochemistry describes the energy changes that occur as a result of reactions or chemical changes in a substance.
Exergonic Reaction
The term exergonic is derived from the Greek word in which ‘ergon’ means work and exergonic means ‘work outside’. Exergonic reactions releases work energy. Exergonic reactions are different from exothermic reactions, the one that releases only heat energy during the course of the reaction. So, exothermic reaction is one type of exergonic reaction. Exergonic reaction releases work energy in different forms like heat, light or sound. For example, a glow stick releases light making that an exergonic reaction and not an exothermic reaction since no heat is released. Even endothermic reactions at very high temperature are exergonic.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images