2 Li(s) + Ag:Croa(s)→ Li:Croa(s) + 2 Ag(s) (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode? (b) Choose the two half-reactions from a table of standard reduction potentials that most closely approximate the reaction that occur within the battery. What is the standard voltage generated by a cell operating with these half-reactions? (c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to what you've shown me in (b)? (d) Calculate the voltage at body temperature. Standard reduction potentials are as below: AgCl(s) + Ag(s) + C (ay) Ag(CN)₂(aq) + — Ag(s) + 2CN (ap) Ag-Cros)+22 Ag(s) + CO2(a) Agl(s) + Ag(s) + 1(a) Ag(S₂0₂):¹(aq) + Ag(s) +25,0} (ay) Al³+ (aq) + 3e Al(s) -1.66 210,(a) + 12 11(a) + 10 (1) + 6H₂O(1) H₂AsO(a) + 2H(aq) + 2H₂AsO(a) + H₂O(1) +0.56 K"(aq) +eK() Ba(ay)+26" Ba(1) -2.90 (a)+L() +0.85 +0.54 +1.20 -2.92 +0.32 Mg(a)+2e-Mg(s) BO(a) + 2H(aq) + 3e Bi(s) + H₂O(1) Be()+22(a) -3.05 -2.37 -1.18 +1.07 Mn(a)+2e-Mn(s) 2BrO, (a) + 12H(aq) + 10e" Bey(1) + 6H₂O(1) 200) +211(a) + 2€°— H₂C₂O₂(a) C₂²" (ay)+26-C(1) +1.23 +1.51 +1.52 MnO()+41(a)+2M² (aq) + 211₂0(1 -0.49 Mn0, "(a) +SH(a) + SeMn(a) + 4H₂O(7) -2.87 Mn0, (a) + 2H₂O(1) + 3eMnO(s) + 4OH(aq) +0.59 -0.40 HNO(a)+ H(a)+eNO) + H₂O() +1.61 N)+ 4H₂O()+440H(a) + N₂) +1.36 N)+SH(aq) + 4e²N₂l₂" (a) Ca (ay)+26-24(1) Ce (ap) + Cet" (ap) C6)+26²—2C (af) +1.63 NO₂ (aq) + 411²(aq) + 3€ NO) + 2H₂O(1) +0.89 Na(a)Na(s) 2HC10(aq) + 2H(aq) + 2) + 2H,O(1) C30" (aq) + H₂O(1)+2e-Cr(a) + 2011 (ay) 2010, (a)+12H(aq) + 10e-C₂) + 6H₂O(1) Co² (a) + 2 Co(s) +1.47 Ni(a)+2²(¹) Co² (a) Co² (ap) + C¹(a)+3ea() C¹ (ay)+Cr³(aq) -0.28 0)+41(a)+421,0(1) +1.84 0)+211₂0()+440H(aq) -0.74 0+21(a) + 2H₂O₂(a) -0.41 0)+21(a)+260/61) + 11₂0(1) +1.33 16² (a)+2²(1) -0.13 Po(s) + HSO(a) + 3H(aq) + 2² Co(a)+1411(a)+6e"-20"(a)+71₂0(1) Co(a) + 4H₂O(1) + 3²²— Cu(s) Cu(a) Ca(OH),(s) + SOH(ay) Cu(a) +2e Cu²" (aq) + Cu(1) Cu (aq) + Cul(s) + Cu(s) + (a) Ft) + 2e-21(a) Fe²(a)+2e-Fe(s) Fe²(a) + Fe²(a) Fe(CN)(a) + Fe(CN) (4) 2H(aq) + 2 H₂() +0.22 H₂O(g) + 2H²(aq) + 2e² — 211,0(1) -0.31 Hg() +2²-2Hg(1) +0.45 211g (a)+2²"-₂²" (a) -0.15 g (a)+2²"Hg(¹7) +0.01)+2e-21(a) Pt50)+2H0(1) +1.78 +0.79 +0.92 +0.34 950 (1) + H²(aq) + 2€²— Pb(s) + 150, (a) +0.15 PIC12(aq) + 2e-P(s) + 4CP (ay) +0.52 S(s) + 2H(aq) + 2H₂S() -0.19 1,50(a) + 4 11²(aq) + 4e²S(s) + 3H₂O(1) +2.87 HSO,(aq) + 3H²(aq) + 2 H₂SO₂(aq) + H₂O(1) -0.44 Se(a)+2e-Sn(1) +0.77 Sn(a)+2²³ (4) +0.36 Vo(a) + 2H(a)+VO³(aq) + H₂O(1) 0.00 Zn(a)+2²" Zn(s) -1.16 -0.23 +0.96 -2.71 +1.23 +0.40 +0.68 +2.07 -0.13 +1.69 -0.36 +0.73 +0.14 +0.45 +0.17 -0.14 +0.15 +1.00 -0.76
2 Li(s) + Ag:Croa(s)→ Li:Croa(s) + 2 Ag(s) (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode? (b) Choose the two half-reactions from a table of standard reduction potentials that most closely approximate the reaction that occur within the battery. What is the standard voltage generated by a cell operating with these half-reactions? (c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to what you've shown me in (b)? (d) Calculate the voltage at body temperature. Standard reduction potentials are as below: AgCl(s) + Ag(s) + C (ay) Ag(CN)₂(aq) + — Ag(s) + 2CN (ap) Ag-Cros)+22 Ag(s) + CO2(a) Agl(s) + Ag(s) + 1(a) Ag(S₂0₂):¹(aq) + Ag(s) +25,0} (ay) Al³+ (aq) + 3e Al(s) -1.66 210,(a) + 12 11(a) + 10 (1) + 6H₂O(1) H₂AsO(a) + 2H(aq) + 2H₂AsO(a) + H₂O(1) +0.56 K"(aq) +eK() Ba(ay)+26" Ba(1) -2.90 (a)+L() +0.85 +0.54 +1.20 -2.92 +0.32 Mg(a)+2e-Mg(s) BO(a) + 2H(aq) + 3e Bi(s) + H₂O(1) Be()+22(a) -3.05 -2.37 -1.18 +1.07 Mn(a)+2e-Mn(s) 2BrO, (a) + 12H(aq) + 10e" Bey(1) + 6H₂O(1) 200) +211(a) + 2€°— H₂C₂O₂(a) C₂²" (ay)+26-C(1) +1.23 +1.51 +1.52 MnO()+41(a)+2M² (aq) + 211₂0(1 -0.49 Mn0, "(a) +SH(a) + SeMn(a) + 4H₂O(7) -2.87 Mn0, (a) + 2H₂O(1) + 3eMnO(s) + 4OH(aq) +0.59 -0.40 HNO(a)+ H(a)+eNO) + H₂O() +1.61 N)+ 4H₂O()+440H(a) + N₂) +1.36 N)+SH(aq) + 4e²N₂l₂" (a) Ca (ay)+26-24(1) Ce (ap) + Cet" (ap) C6)+26²—2C (af) +1.63 NO₂ (aq) + 411²(aq) + 3€ NO) + 2H₂O(1) +0.89 Na(a)Na(s) 2HC10(aq) + 2H(aq) + 2) + 2H,O(1) C30" (aq) + H₂O(1)+2e-Cr(a) + 2011 (ay) 2010, (a)+12H(aq) + 10e-C₂) + 6H₂O(1) Co² (a) + 2 Co(s) +1.47 Ni(a)+2²(¹) Co² (a) Co² (ap) + C¹(a)+3ea() C¹ (ay)+Cr³(aq) -0.28 0)+41(a)+421,0(1) +1.84 0)+211₂0()+440H(aq) -0.74 0+21(a) + 2H₂O₂(a) -0.41 0)+21(a)+260/61) + 11₂0(1) +1.33 16² (a)+2²(1) -0.13 Po(s) + HSO(a) + 3H(aq) + 2² Co(a)+1411(a)+6e"-20"(a)+71₂0(1) Co(a) + 4H₂O(1) + 3²²— Cu(s) Cu(a) Ca(OH),(s) + SOH(ay) Cu(a) +2e Cu²" (aq) + Cu(1) Cu (aq) + Cul(s) + Cu(s) + (a) Ft) + 2e-21(a) Fe²(a)+2e-Fe(s) Fe²(a) + Fe²(a) Fe(CN)(a) + Fe(CN) (4) 2H(aq) + 2 H₂() +0.22 H₂O(g) + 2H²(aq) + 2e² — 211,0(1) -0.31 Hg() +2²-2Hg(1) +0.45 211g (a)+2²"-₂²" (a) -0.15 g (a)+2²"Hg(¹7) +0.01)+2e-21(a) Pt50)+2H0(1) +1.78 +0.79 +0.92 +0.34 950 (1) + H²(aq) + 2€²— Pb(s) + 150, (a) +0.15 PIC12(aq) + 2e-P(s) + 4CP (ay) +0.52 S(s) + 2H(aq) + 2H₂S() -0.19 1,50(a) + 4 11²(aq) + 4e²S(s) + 3H₂O(1) +2.87 HSO,(aq) + 3H²(aq) + 2 H₂SO₂(aq) + H₂O(1) -0.44 Se(a)+2e-Sn(1) +0.77 Sn(a)+2²³ (4) +0.36 Vo(a) + 2H(a)+VO³(aq) + H₂O(1) 0.00 Zn(a)+2²" Zn(s) -1.16 -0.23 +0.96 -2.71 +1.23 +0.40 +0.68 +2.07 -0.13 +1.69 -0.36 +0.73 +0.14 +0.45 +0.17 -0.14 +0.15 +1.00 -0.76
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
PLEASE ANSWER PART D
![Heart pacemakers are often powered by lithium-silver chromate "button"
batteries. The overall cell reaction is:
2 Li(s) + Ag2CrO4(s) → Li2CrO4(s) + 2 Ag(s)
(a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode
or the cathode?
(b) Choose the two half-reactions from a table of standard reduction potentials that most
closely approximate the reaction that occur within the battery. What is the standard
voltage generated by a cell operating with these half-reactions?
(c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to
what you've shown me in (b)?
(d) Calculate the voltage at body temperature.
Standard reduction potentials are as below:
Half-Reaction
Agt (aq) + e Ag(s)
AgBr(s) + ¢* * Ag(s) + Br"(aq)
AgCl(s) + e Ag(s) + Cl(aq)
Ag(CN)₂ (aq) +eAg(s) + 2 CN" (aq)
AgaCrO₂ (s) + 2 e 2 Ag(s) + CrO2(aq)
Agl(s) + e Ag(s) + (aq)
Ag(S₂03)2(aq) +eAg(s) + 2S₂O3(aq)
Al³+ (aq) + 3e Al(s)
H₂AsO₂(aq) + 2H*(aq) + 2e H₂AsO₂(aq) + H₂O(1)
Ba²+ (aq) + 2 e Ba(s)
BIO+ (aq) + 2 H*(aq) + 3 e² → Bi(s) + H₂O(1)
Br₂(1) +2 e 2 Br (aq)
2 Bro, (aq) + 12 H*(aq) + 10 e Br₂(1) + 6H₂O(1)
2 CO₂(g) + 2H(aq) + 2e
H₂C₂O4(aq)
Ca²+ (aq) + 2e
Ca(s)
Cd(s)
Ce³(aq)
Cu²+ (aq) + 2e
Cu²+ (aq) + e
Cu (aq) +
Cd²+ (aq) + 2e
Ce+ (aq) +
Cl₂(g) + 2e- 2 C1 (aq)
2 HCIO(aq) + 2H*(aq) + 2eCl₂(g) + 2 H₂O(1)
CIO (aq) + H₂O(1) + 2e Cl(aq) + 2OH(aq)
2 CIO, (aq) + 12 H(aq) + 10eCl₂(g) + 6H₂O(1)
Co²+ (aq) + 2e
Co(s)
Cot(aq)
Cost(aq) +ẽ
+1.84 O₂(g) + 2H₂O(l) + 4e¯
Cr³+ (aq) + 3e
Cr(s)
-0.74 O₂(g) + 2H(aq) + 2e →
Cr³+ (aq) + Cr²+ (aq)
-0.41 O₂(g) + 2H*(aq) + 2e
Cr₂O₂(aq) + 14 H(aq) + 6e-2 Cr³+ (aq) +7H₂O() +1.33 Pb²+ (aq) + 2e Pb(s)
CrO2(aq) + 4H₂O(1) + 3e-
-0.13 PbO₂(s) + HSO (aq) + 3H*(aq) + 2 e
Cr(OH),(s) + 5OH(aq)
Cu(s)
Cu* (aq)
Cu(s)
Cu(s) + (aq)
Cul(s) +
F₂(g) + 2e2F (aq)
Fe²+ (aq) + 2e
Fe(s)
Fe³+ (aq) + e
Fe²+ (aq)
Fe(CN) (aq) + e Fe(CN),(aq)
2H*(aq) + 2e
E° (V)
Half-Reaction
+0.80 2 H₂O(1) + 2e H₂(g) + 2OH(aq)
+0.10 HO₂ (aq) + H₂O(1) + 2e3OH(aq)
+0.22 H₂O₂(aq) + 2H*(aq) + 2e-2H₂O(1)
-0.31 Hg (aq) + 2e-2 Hg(1)
+0.45 2 Hg (aq) + 2e Hg₂+ (aq)
-0.15 Hg2+ (aq) + 2eHg(1)
12₂(s) + 2e ► 21 (aq)
-1.66 210,(aq) + 12 H(aq) + 10 e 1₂(s) + 6H₂O(1)
+0.56 K*(aq) + eK(s)
-2.90 Li*(aq) +eLi(s)
+0.01
H₂(g)
+0.32 Mg (aq) + 2e
Mg(s)
+1.07 Mn²(aq) + 2e"- Mn(s)
+1.52 MnO₂(s) + 4H(aq) + 2e →→→Mn²+ (aq) + 2 H₂O(1)
-0.49
MnO, (aq) + 8H(aq) + Se
Mn² (aq) + 4H₂O(1)
-2.87
-0.40
MnO₂ (aq) + 2H₂O(l) + 3e
MnO₂(s) + 4 OH(aq)
HNO₂(aq) + H(aq) + e NO(g) + H₂O(l)
+1.61 N₂(g) + 4H₂O(1) + 4e4OH(aq) + N₂H₂(aq)
+1.36 N₂(g) + 5H(aq) + 4e N₂H₂ (aq)
NO(g) + 2H₂O(1)
+1.63 NO₂ (aq) + 4H(aq) + 3e
+0.89 Na (aq) + e- Na(s)
+1.47
-0.28
Ni²+ (aq) + 2e → Ni(s)
O₂(g) + 4H(aq) + 4e-2 H₂O(1)
4 OH(aq)
H₂O₂(aq)
O₂(g) + H₂O(1)
PbSO4(s) + 2 H₂O(1)
+0.34
+0.15 PIC12(aq) + 2e
+0.52 S(s) + 2H(aq) + 2e
PbSO4(s) + H(aq) + 2e Pb(s) + HSO₂ (aq)
Pt(s) + 4 Cl(aq)
H₂S(g)
-0.19 H₂SO₂(aq) + 4H*(aq) + 4e¯S(s) + 3H₂O(1)
H₂SO3(aq) + H₂O(1)
+2.87 HSO (aq) + 3 H*(aq) + 2e
-0.44 Sn²(aq) + 2e-Sn(s)
+0.77 Sn (aq) + 2e
Sn²+ (aq)
+0.36 VO₂ (aq) + 2H(aq) + e- VO²+ (aq) + H₂O(1)
0.00 Zn²(aq) + 2e-Zn(s)
E°(V)
-0.83
+0.88
+1.78
+0.79
+0.92
+0.85
+0.54
+1.20
-2.92
-3.05
-2.37
-1.18
+1.23
+1.51
+0.59
+1.00
-1.16
-0.23
+0.96
-2.71
-0.28
+1.23
+0.40
+0.68
+2.07
-0.13
+1.69
-0.36
+0.73
+0.14
+0.45
+0.17
-0.14
+0.15
+1.00
-0.76](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4488d82d-9aac-4035-8259-a331a76b9b0b%2F60ba34dc-0177-475d-84e9-335321b3b9df%2Fze5pt2_processed.png&w=3840&q=75)
Transcribed Image Text:Heart pacemakers are often powered by lithium-silver chromate "button"
batteries. The overall cell reaction is:
2 Li(s) + Ag2CrO4(s) → Li2CrO4(s) + 2 Ag(s)
(a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode
or the cathode?
(b) Choose the two half-reactions from a table of standard reduction potentials that most
closely approximate the reaction that occur within the battery. What is the standard
voltage generated by a cell operating with these half-reactions?
(c) The actual value is about +3.5 V for this pacemaker cell. How does that compare to
what you've shown me in (b)?
(d) Calculate the voltage at body temperature.
Standard reduction potentials are as below:
Half-Reaction
Agt (aq) + e Ag(s)
AgBr(s) + ¢* * Ag(s) + Br"(aq)
AgCl(s) + e Ag(s) + Cl(aq)
Ag(CN)₂ (aq) +eAg(s) + 2 CN" (aq)
AgaCrO₂ (s) + 2 e 2 Ag(s) + CrO2(aq)
Agl(s) + e Ag(s) + (aq)
Ag(S₂03)2(aq) +eAg(s) + 2S₂O3(aq)
Al³+ (aq) + 3e Al(s)
H₂AsO₂(aq) + 2H*(aq) + 2e H₂AsO₂(aq) + H₂O(1)
Ba²+ (aq) + 2 e Ba(s)
BIO+ (aq) + 2 H*(aq) + 3 e² → Bi(s) + H₂O(1)
Br₂(1) +2 e 2 Br (aq)
2 Bro, (aq) + 12 H*(aq) + 10 e Br₂(1) + 6H₂O(1)
2 CO₂(g) + 2H(aq) + 2e
H₂C₂O4(aq)
Ca²+ (aq) + 2e
Ca(s)
Cd(s)
Ce³(aq)
Cu²+ (aq) + 2e
Cu²+ (aq) + e
Cu (aq) +
Cd²+ (aq) + 2e
Ce+ (aq) +
Cl₂(g) + 2e- 2 C1 (aq)
2 HCIO(aq) + 2H*(aq) + 2eCl₂(g) + 2 H₂O(1)
CIO (aq) + H₂O(1) + 2e Cl(aq) + 2OH(aq)
2 CIO, (aq) + 12 H(aq) + 10eCl₂(g) + 6H₂O(1)
Co²+ (aq) + 2e
Co(s)
Cot(aq)
Cost(aq) +ẽ
+1.84 O₂(g) + 2H₂O(l) + 4e¯
Cr³+ (aq) + 3e
Cr(s)
-0.74 O₂(g) + 2H(aq) + 2e →
Cr³+ (aq) + Cr²+ (aq)
-0.41 O₂(g) + 2H*(aq) + 2e
Cr₂O₂(aq) + 14 H(aq) + 6e-2 Cr³+ (aq) +7H₂O() +1.33 Pb²+ (aq) + 2e Pb(s)
CrO2(aq) + 4H₂O(1) + 3e-
-0.13 PbO₂(s) + HSO (aq) + 3H*(aq) + 2 e
Cr(OH),(s) + 5OH(aq)
Cu(s)
Cu* (aq)
Cu(s)
Cu(s) + (aq)
Cul(s) +
F₂(g) + 2e2F (aq)
Fe²+ (aq) + 2e
Fe(s)
Fe³+ (aq) + e
Fe²+ (aq)
Fe(CN) (aq) + e Fe(CN),(aq)
2H*(aq) + 2e
E° (V)
Half-Reaction
+0.80 2 H₂O(1) + 2e H₂(g) + 2OH(aq)
+0.10 HO₂ (aq) + H₂O(1) + 2e3OH(aq)
+0.22 H₂O₂(aq) + 2H*(aq) + 2e-2H₂O(1)
-0.31 Hg (aq) + 2e-2 Hg(1)
+0.45 2 Hg (aq) + 2e Hg₂+ (aq)
-0.15 Hg2+ (aq) + 2eHg(1)
12₂(s) + 2e ► 21 (aq)
-1.66 210,(aq) + 12 H(aq) + 10 e 1₂(s) + 6H₂O(1)
+0.56 K*(aq) + eK(s)
-2.90 Li*(aq) +eLi(s)
+0.01
H₂(g)
+0.32 Mg (aq) + 2e
Mg(s)
+1.07 Mn²(aq) + 2e"- Mn(s)
+1.52 MnO₂(s) + 4H(aq) + 2e →→→Mn²+ (aq) + 2 H₂O(1)
-0.49
MnO, (aq) + 8H(aq) + Se
Mn² (aq) + 4H₂O(1)
-2.87
-0.40
MnO₂ (aq) + 2H₂O(l) + 3e
MnO₂(s) + 4 OH(aq)
HNO₂(aq) + H(aq) + e NO(g) + H₂O(l)
+1.61 N₂(g) + 4H₂O(1) + 4e4OH(aq) + N₂H₂(aq)
+1.36 N₂(g) + 5H(aq) + 4e N₂H₂ (aq)
NO(g) + 2H₂O(1)
+1.63 NO₂ (aq) + 4H(aq) + 3e
+0.89 Na (aq) + e- Na(s)
+1.47
-0.28
Ni²+ (aq) + 2e → Ni(s)
O₂(g) + 4H(aq) + 4e-2 H₂O(1)
4 OH(aq)
H₂O₂(aq)
O₂(g) + H₂O(1)
PbSO4(s) + 2 H₂O(1)
+0.34
+0.15 PIC12(aq) + 2e
+0.52 S(s) + 2H(aq) + 2e
PbSO4(s) + H(aq) + 2e Pb(s) + HSO₂ (aq)
Pt(s) + 4 Cl(aq)
H₂S(g)
-0.19 H₂SO₂(aq) + 4H*(aq) + 4e¯S(s) + 3H₂O(1)
H₂SO3(aq) + H₂O(1)
+2.87 HSO (aq) + 3 H*(aq) + 2e
-0.44 Sn²(aq) + 2e-Sn(s)
+0.77 Sn (aq) + 2e
Sn²+ (aq)
+0.36 VO₂ (aq) + 2H(aq) + e- VO²+ (aq) + H₂O(1)
0.00 Zn²(aq) + 2e-Zn(s)
E°(V)
-0.83
+0.88
+1.78
+0.79
+0.92
+0.85
+0.54
+1.20
-2.92
-3.05
-2.37
-1.18
+1.23
+1.51
+0.59
+1.00
-1.16
-0.23
+0.96
-2.71
-0.28
+1.23
+0.40
+0.68
+2.07
-0.13
+1.69
-0.36
+0.73
+0.14
+0.45
+0.17
-0.14
+0.15
+1.00
-0.76
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY