(1+x2)y''+2xy'-2y=0 y(0)=1, y'(0)=1  What  is the power series solution about x=0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

(1+x2)y''+2xy'-2y=0 y(0)=1, y'(0)=1 

What  is the power series solution about x=0

Expert Solution
Step 1: Power series derivation

Given ODE is open parentheses 1 plus x squared close parentheses y apostrophe apostrophe plus 2 x y apostrophe minus 2 y equals 0 comma y left parenthesis 0 right parenthesis equals 1 comma y apostrophe left parenthesis 0 right parenthesis equals 1

Observed that here x equals 0 is ordinary point for given ODE,So it's power series solution is of the form about x equals 0 

y left parenthesis x right parenthesis equals sum from n equals 0 to infinity of a subscript n x to the power of n rightwards double arrow y apostrophe left parenthesis x right parenthesis equals stack sum n with n equals 0 below and infinity on top a subscript n x to the power of n minus 1 end exponent space a n d space y apostrophe apostrophe left parenthesis x right parenthesis equals stack sum n with n equals 0 below and infinity on top left parenthesis n minus 1 right parenthesis a subscript n x to the power of n minus 2 end exponent space

Now by substituting we get open parentheses 1 plus x squared close parentheses sum from n equals 0 to infinity of n left parenthesis n minus 1 right parenthesis a subscript n x to the power of n minus 2 end exponent plus 2 x sum from n equals 0 to infinity of n a subscript n x to the power of n minus 1 end exponent minus 2 sum from n equals 0 to infinity of a subscript n x to the power of n equals 0

rightwards double arrow sum from n equals 2 to infinity of n left parenthesis n minus 1 right parenthesis a subscript n x to the power of n minus 2 end exponent plus sum from n equals 2 to infinity of n left parenthesis n minus 1 right parenthesis a subscript n x to the power of n plus sum from n equals 0 to infinity of 2 n a subscript n x to the power of n minus sum from n equals 0 to infinity of a subscript n x to the power of n equals 0

rightwards double arrow sum from n equals 0 to infinity of open parentheses n plus 2 close parentheses left parenthesis n plus 1 right parenthesis a subscript n plus 2 end subscript x to the power of n plus sum from n equals 0 to infinity of open parentheses n plus 2 close parentheses left parenthesis n plus 1 right parenthesis a subscript n plus 2 end subscript x to the power of n plus 2 end exponent plus sum from n equals 0 to infinity of 2 open parentheses n plus 1 close parentheses a subscript n plus 1 end subscript x to the power of n plus 1 end exponent minus sum from n equals 0 to infinity of a subscript n x to the power of n equals 0 

rightwards double arrow sum from n equals 0 to infinity of open parentheses n plus 2 close parentheses open parentheses n plus 1 close parentheses a subscript n plus 2 end subscript x to the power of n plus 2 end exponent plus sum from n equals 0 to infinity of 2 open parentheses n plus 1 close parentheses a subscript n plus 1 end subscript x to the power of n plus 1 end exponent plus sum from n equals 0 to infinity of open square brackets open parentheses n plus 2 close parentheses open parentheses n plus 1 close parentheses a subscript n plus 2 end subscript minus a subscript n close square brackets x to the power of n equals 0



steps

Step by step

Solved in 4 steps with 19 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,