188 CHAPTER 3 Differentiation Rules 3.2 EXERCISES 1. Find the derivative of f(x) = (1 + 2x)(x - x) in two ways: by using the Product Rule and by performing the multiplica- tion first. Do your answers agree? x2 29. f(x) = 1 e 2. Find the derivative of the function 31-32 Find an equation the specified point. Vx x4-5x3 F(x) x2 1 + x + x2 31. y in two ways: by using the Quotient Rule and by simplifying first. Show that your answers are equivalent. Which method do 33-34 Find equation you prefer? given curve at the sp 33. y 2xex, (0, 3-26 Differentiate. - (x + 2x) e 4. g(x) 3. f(x)= (3x2 5x)e ex 35. (a) The curve 6. У 5. у - 1 - e Agnesi. F at the po (b) Illustrate ex x22 X 1 + 2x 8. G(x) 7. g(x) 2x+1 3- 4x line on t 9. H(u) (u - Vu) (u + u) 36. (a) The cur an equa 2) 10. J(v)= (v3 - 2v)(v (3, 0.3 (b) Illustr: line o -( 3 (y5y3) 1 11. F(y) = 37. (a) If f( (b) Chec 12. f(z) (1- e)(z + e?) com Vx 14. y 2 x x2 +1 38. (а) If f (b) Che 13. у — 3 1 1 со t3+3t 16. y 3 t 2t2-1 15. у б t2 4t3 39. (a) If (b) C b ae" 18. h(r) 17. y e(p +pvp) b e" 40. (a) L (b) 20. y (z2e)z + 19. y s2 4 + t VI 21. f(t)= 41. If f 22. V(t)= te' t - 3 42. If At xe 24. F(t)= 43. Su 23. f(x) Bt2 Ct3 11 x2 ex Fi (a х 26. f(x)= 1 25. f(x)= I1 Cx + d 44. S X + х 27-30 Find f'(x) and f"(x) Vxe 28. f(x) = 27. f(x) (x3 1)e 0 4HAC 0 03/110
188 CHAPTER 3 Differentiation Rules 3.2 EXERCISES 1. Find the derivative of f(x) = (1 + 2x)(x - x) in two ways: by using the Product Rule and by performing the multiplica- tion first. Do your answers agree? x2 29. f(x) = 1 e 2. Find the derivative of the function 31-32 Find an equation the specified point. Vx x4-5x3 F(x) x2 1 + x + x2 31. y in two ways: by using the Quotient Rule and by simplifying first. Show that your answers are equivalent. Which method do 33-34 Find equation you prefer? given curve at the sp 33. y 2xex, (0, 3-26 Differentiate. - (x + 2x) e 4. g(x) 3. f(x)= (3x2 5x)e ex 35. (a) The curve 6. У 5. у - 1 - e Agnesi. F at the po (b) Illustrate ex x22 X 1 + 2x 8. G(x) 7. g(x) 2x+1 3- 4x line on t 9. H(u) (u - Vu) (u + u) 36. (a) The cur an equa 2) 10. J(v)= (v3 - 2v)(v (3, 0.3 (b) Illustr: line o -( 3 (y5y3) 1 11. F(y) = 37. (a) If f( (b) Chec 12. f(z) (1- e)(z + e?) com Vx 14. y 2 x x2 +1 38. (а) If f (b) Che 13. у — 3 1 1 со t3+3t 16. y 3 t 2t2-1 15. у б t2 4t3 39. (a) If (b) C b ae" 18. h(r) 17. y e(p +pvp) b e" 40. (a) L (b) 20. y (z2e)z + 19. y s2 4 + t VI 21. f(t)= 41. If f 22. V(t)= te' t - 3 42. If At xe 24. F(t)= 43. Su 23. f(x) Bt2 Ct3 11 x2 ex Fi (a х 26. f(x)= 1 25. f(x)= I1 Cx + d 44. S X + х 27-30 Find f'(x) and f"(x) Vxe 28. f(x) = 27. f(x) (x3 1)e 0 4HAC 0 03/110
188 CHAPTER 3 Differentiation Rules 3.2 EXERCISES 1. Find the derivative of f(x) = (1 + 2x)(x - x) in two ways: by using the Product Rule and by performing the multiplica- tion first. Do your answers agree? x2 29. f(x) = 1 e 2. Find the derivative of the function 31-32 Find an equation the specified point. Vx x4-5x3 F(x) x2 1 + x + x2 31. y in two ways: by using the Quotient Rule and by simplifying first. Show that your answers are equivalent. Which method do 33-34 Find equation you prefer? given curve at the sp 33. y 2xex, (0, 3-26 Differentiate. - (x + 2x) e 4. g(x) 3. f(x)= (3x2 5x)e ex 35. (a) The curve 6. У 5. у - 1 - e Agnesi. F at the po (b) Illustrate ex x22 X 1 + 2x 8. G(x) 7. g(x) 2x+1 3- 4x line on t 9. H(u) (u - Vu) (u + u) 36. (a) The cur an equa 2) 10. J(v)= (v3 - 2v)(v (3, 0.3 (b) Illustr: line o -( 3 (y5y3) 1 11. F(y) = 37. (a) If f( (b) Chec 12. f(z) (1- e)(z + e?) com Vx 14. y 2 x x2 +1 38. (а) If f (b) Che 13. у — 3 1 1 со t3+3t 16. y 3 t 2t2-1 15. у б t2 4t3 39. (a) If (b) C b ae" 18. h(r) 17. y e(p +pvp) b e" 40. (a) L (b) 20. y (z2e)z + 19. y s2 4 + t VI 21. f(t)= 41. If f 22. V(t)= te' t - 3 42. If At xe 24. F(t)= 43. Su 23. f(x) Bt2 Ct3 11 x2 ex Fi (a х 26. f(x)= 1 25. f(x)= I1 Cx + d 44. S X + х 27-30 Find f'(x) and f"(x) Vxe 28. f(x) = 27. f(x) (x3 1)e 0 4HAC 0 03/110
I need help with Calculus HW. I need to differentiate problem #25 on page 188, Section 3.2, of the James Stewart Calculus Eighth Edition textbook. I need help on simplifying the problem.
With integration, one of the major concepts of calculus. Differentiation is the derivative or rate of change of a function with respect to the independent variable.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.