18. Let f(x)=2- |2x - 1. Show that there is no value of e such that f(3) -f(0) = f'(c)(3-0). Why does this not contradict the Mean Value Theorem?
18. Let f(x)=2- |2x - 1. Show that there is no value of e such that f(3) -f(0) = f'(c)(3-0). Why does this not contradict the Mean Value Theorem?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem 18:**
Let \( f(x) = 2 - |2x - 1| \). Show that there is no value of \( c \) such that
\[
\frac{f(3) - f(0)}{3 - 0} = f'(c)
\]
Why does this not contradict the Mean Value Theorem?
---
**Solution Explanation:**
To solve this problem, we need to first find the expression for \( f(x) \) and subsequently calculate \( f'(x) \).
1. **Evaluate \( f(3) \) and \( f(0) \):**
- Since \( f(x) = 2 - |2x - 1| \), let's consider the two cases for \( |2x - 1| \):
- If \( 2x - 1 \geq 0 \), then \( |2x - 1| = 2x - 1 \).
- If \( 2x - 1 < 0 \), then \( |2x - 1| = -(2x - 1) = -2x + 1 \).
- Calculate \( f(3) \):
\[
f(3) = 2 - |2(3) - 1| = 2 - |6 - 1| = 2 - 5 = -3
\]
- Calculate \( f(0) \):
\[
f(0) = 2 - |2(0) - 1| = 2 - |-1| = 2 - 1 = 1
\]
2. **Calculate the average rate of change from \( x = 0 \) to \( x = 3 \):**
\[
\frac{f(3) - f(0)}{3 - 0} = \frac{-3 - 1}{3} = \frac{-4}{3}
\]
3. **Calculate the derivative \( f'(x) \):**
- Use the piecewise definition for \( |2x - 1| \):
- For \( x \geq \frac{1}{2} \), \( f(x) = 2 - (2x - 1) = 3 - 2x \).
- Therefore, \( f'(x)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F90d2137b-83f2-4c15-8300-1a033b76054d%2F4c9983db-5133-45ad-ad03-2424d335b5a0%2Fesxn25u_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem 18:**
Let \( f(x) = 2 - |2x - 1| \). Show that there is no value of \( c \) such that
\[
\frac{f(3) - f(0)}{3 - 0} = f'(c)
\]
Why does this not contradict the Mean Value Theorem?
---
**Solution Explanation:**
To solve this problem, we need to first find the expression for \( f(x) \) and subsequently calculate \( f'(x) \).
1. **Evaluate \( f(3) \) and \( f(0) \):**
- Since \( f(x) = 2 - |2x - 1| \), let's consider the two cases for \( |2x - 1| \):
- If \( 2x - 1 \geq 0 \), then \( |2x - 1| = 2x - 1 \).
- If \( 2x - 1 < 0 \), then \( |2x - 1| = -(2x - 1) = -2x + 1 \).
- Calculate \( f(3) \):
\[
f(3) = 2 - |2(3) - 1| = 2 - |6 - 1| = 2 - 5 = -3
\]
- Calculate \( f(0) \):
\[
f(0) = 2 - |2(0) - 1| = 2 - |-1| = 2 - 1 = 1
\]
2. **Calculate the average rate of change from \( x = 0 \) to \( x = 3 \):**
\[
\frac{f(3) - f(0)}{3 - 0} = \frac{-3 - 1}{3} = \frac{-4}{3}
\]
3. **Calculate the derivative \( f'(x) \):**
- Use the piecewise definition for \( |2x - 1| \):
- For \( x \geq \frac{1}{2} \), \( f(x) = 2 - (2x - 1) = 3 - 2x \).
- Therefore, \( f'(x)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)