17. f (1,y, z) = x subject to z? + y? + 2² – z = 1 %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Section 12.9 - Lagrange Multipliers Number 17

17. f (x, y, 2) = x subject to r? + y? + 2 – z = 1
Transcribed Image Text:17. f (x, y, 2) = x subject to r? + y? + 2 – z = 1
15-24. Lagrange multipliers in three variables Use Lagrange multipliers to find the maximum and minimum values of
f (when they exist) subject to the given constraint.
Transcribed Image Text:15-24. Lagrange multipliers in three variables Use Lagrange multipliers to find the maximum and minimum values of f (when they exist) subject to the given constraint.
Expert Solution
Step 1

Let h(x, y, z)=x2+y2+z2-z. We now have f(x, y, z)=(1, 0, 0) and h(x, y, z)=(2x, 2y, 2z-1). Let λ be the lagrnage's multiplier. Then we have f(x, y, z)=λ h(x, y, z) implying that (1, 0, 0) =λ(2x, 2y, 2z-1)

We also have the relation x2+y2+z2-z=1.

We now have 

2λx=12λy=02λz-λ=0x2+y2+z2-z=1

Solving the above relations, we get y=0, x=1λ, z=12, and the relation x2+y2+z2-z=1.

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,