= 16.6 0% 2.45 μΧ2 = 18.8 ơx.-2.83 The two variables are correlated, and the covariance is equal to 2.0. Determine the probability of failure if failure is defined as the state when Y 0 3.8. The resistance (or capacity) R of a member is to be modeled using R = R,MPF where Rn is the nominal value of the capacity determined using code procedures and M, P, and Fare random variables that account for various uncertainties in the capacity. If M, P, and F are all lognormal random variables, determine the mean and variance of R in terms of the means and variances of M, P, and F.
= 16.6 0% 2.45 μΧ2 = 18.8 ơx.-2.83 The two variables are correlated, and the covariance is equal to 2.0. Determine the probability of failure if failure is defined as the state when Y 0 3.8. The resistance (or capacity) R of a member is to be modeled using R = R,MPF where Rn is the nominal value of the capacity determined using code procedures and M, P, and Fare random variables that account for various uncertainties in the capacity. If M, P, and F are all lognormal random variables, determine the mean and variance of R in terms of the means and variances of M, P, and F.
= 16.6 0% 2.45 μΧ2 = 18.8 ơx.-2.83 The two variables are correlated, and the covariance is equal to 2.0. Determine the probability of failure if failure is defined as the state when Y 0 3.8. The resistance (or capacity) R of a member is to be modeled using R = R,MPF where Rn is the nominal value of the capacity determined using code procedures and M, P, and Fare random variables that account for various uncertainties in the capacity. If M, P, and F are all lognormal random variables, determine the mean and variance of R in terms of the means and variances of M, P, and F.
3.7. Consider the performance function Y = 3x1-2x2 where Xi and X2 are both normally distributed random variables with Ax' = 16.6 0% 2.45 μΧ2 = 18.8 ơx.-2.83 The two variables are correlated, and the covariance is equal to 2.0. Determine the probability of failure if failure is defined as the state when Y 0 3.8. The resistance (or capacity) R of a member is to be modeled using R = R,MPF where Rn is the nominal value of the capacity determined using code procedures and M, P, and Fare random variables that account for various uncertainties in the capacity. If M, P, and F are all lognormal random variables, determine the mean and variance of R in terms of the means and variances of M, P, and F.
Definition Definition Measure of central tendency that is the average of a given data set. The mean value is evaluated as the quotient of the sum of all observations by the sample size. The mean, in contrast to a median, is affected by extreme values. Very large or very small values can distract the mean from the center of the data. Arithmetic mean: The most common type of mean is the arithmetic mean. It is evaluated using the formula: μ = 1 N ∑ i = 1 N x i Other types of means are the geometric mean, logarithmic mean, and harmonic mean. Geometric mean: The nth root of the product of n observations from a data set is defined as the geometric mean of the set: G = x 1 x 2 ... x n n Logarithmic mean: The difference of the natural logarithms of the two numbers, divided by the difference between the numbers is the logarithmic mean of the two numbers. The logarithmic mean is used particularly in heat transfer and mass transfer. ln x 2 − ln x 1 x 2 − x 1 Harmonic mean: The inverse of the arithmetic mean of the inverses of all the numbers in a data set is the harmonic mean of the data. 1 1 x 1 + 1 x 2 + ...
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.