16-51 Consider a person whose exposed surface area is 1.7 m², emissivity is 0.5, and surface temperature is 32°C. Determine the rate of heat loss from that person by radiation in a large room having walls at a temperature of (a) 300 K and (b) 280 K. Answers: (a) 26.7 W, (b) 121 W 16-52 Consider a sealed 20-cm-high electronic box whose base dimensions are 50 cm x 50 cm placed in a vacuum chamber. The emissivity of the outer surface of the box is 0.95. If the electronic components in the box dissipate a total of 120 W of power and the outer surface temperature of the box is not to exceed 55°C, determine the temperature at which the surrounding surfaces must be kept if this box is to be cooled by radiation alone. Assume the heat transfer from the bottom surface of the box to the stand to be negligible. 50 cm 120 W ε = 0.95 T = 55°C S 20 cm Stand 50 cm Electronic box
16-51 Consider a person whose exposed surface area is 1.7 m², emissivity is 0.5, and surface temperature is 32°C. Determine the rate of heat loss from that person by radiation in a large room having walls at a temperature of (a) 300 K and (b) 280 K. Answers: (a) 26.7 W, (b) 121 W 16-52 Consider a sealed 20-cm-high electronic box whose base dimensions are 50 cm x 50 cm placed in a vacuum chamber. The emissivity of the outer surface of the box is 0.95. If the electronic components in the box dissipate a total of 120 W of power and the outer surface temperature of the box is not to exceed 55°C, determine the temperature at which the surrounding surfaces must be kept if this box is to be cooled by radiation alone. Assume the heat transfer from the bottom surface of the box to the stand to be negligible. 50 cm 120 W ε = 0.95 T = 55°C S 20 cm Stand 50 cm Electronic box
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![16-51 Consider a person whose exposed surface area is
1.7 m², emissivity is 0.5, and surface temperature is 32°C.
Determine the rate of heat loss from that person by radiation
in a large room having walls at a temperature of (a) 300 K and
(b) 280 K. Answers: (a) 26.7 W, (b) 121 W
16-52 Consider a sealed 20-cm-high electronic box whose
base dimensions are 50 cm x 50 cm placed in a vacuum
chamber. The emissivity of the outer surface of the box is 0.95.
If the electronic components in the box dissipate a total of
120 W of power and the outer surface temperature of the box
is not to exceed 55°C, determine the temperature at which the
surrounding surfaces must be kept if this box is to be cooled
by radiation alone. Assume the heat transfer from the bottom
surface of the box to the stand to be negligible.
50 cm
120 W
ε = 0.95
T = 55°C
20 cm
Stand
FIGURE P16-52
50 cm
Electronic
box](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F73337837-9e65-48fa-93ec-e3ebc4287ab6%2F84629226-bfcf-4064-8738-471c9879e3eb%2Frztrqy_processed.jpeg&w=3840&q=75)
Transcribed Image Text:16-51 Consider a person whose exposed surface area is
1.7 m², emissivity is 0.5, and surface temperature is 32°C.
Determine the rate of heat loss from that person by radiation
in a large room having walls at a temperature of (a) 300 K and
(b) 280 K. Answers: (a) 26.7 W, (b) 121 W
16-52 Consider a sealed 20-cm-high electronic box whose
base dimensions are 50 cm x 50 cm placed in a vacuum
chamber. The emissivity of the outer surface of the box is 0.95.
If the electronic components in the box dissipate a total of
120 W of power and the outer surface temperature of the box
is not to exceed 55°C, determine the temperature at which the
surrounding surfaces must be kept if this box is to be cooled
by radiation alone. Assume the heat transfer from the bottom
surface of the box to the stand to be negligible.
50 cm
120 W
ε = 0.95
T = 55°C
20 cm
Stand
FIGURE P16-52
50 cm
Electronic
box
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY