* 14-10 The acid-base indicator HIn undergoes the following reaction in dilute aqueous solution: HIn color 1 H* + In color 2 The following absorbance data were obtained for a 5.00 X 10¬4M solution of HIn in 0.1 M NaOH and 0.1 M HCl. Measurements were made at wavelengths of 485 nm and 625 nm with 1.00-cm cells. 0.1 M NaOH A 485 0.075 A625 = 0.904 0.1 М HСІ A 485 0.487 A625 = 0.181 In the NaOH solution, essentially all of the indicator is present as In ; in the acidic solution, it is essentially all in the form of HIn. (a) Calculate molar absorptivities for In and HIn at 485 and 625 nm. (b) Calculate the acid dissociation constant for the indicator if a pH 5.00 buffer containing a small amount of the indicator exhibits an absorbance of 0.567 at 485 nm and 0.395 at 625 nm (1.00-cm cells). (c) What is the pH of a solution containing a small amount of the indicator that exhibits an absorbance of 0.492 at 485 nm and 0.245 at 635 nm (1.00-cm cells)? (d) A 25.00-mL aliquot of a solution of purified weak organic acid HX required exactly 24.20 mL of a stan- dard solution of a strong base to reach a phenolphthalein end point. When exactly 12.10 mL of the base was added to a second 25.00-mL aliquot of the acid, which contained a small amount of the indicator under consideration, the absorbance was found to be 0.333 at 485 nm and 0.655 at 625 nm (1.00-cm cells). Ca ulate the pH of the solution and K, the wea acid. (e) What would be the absorbance of a solution at 485 and 625 nm (1.50-cm cells) that was 2.00 × 10-4 M in the indicator and was buffered to a pH of 6.000?
* 14-10 The acid-base indicator HIn undergoes the following reaction in dilute aqueous solution: HIn color 1 H* + In color 2 The following absorbance data were obtained for a 5.00 X 10¬4M solution of HIn in 0.1 M NaOH and 0.1 M HCl. Measurements were made at wavelengths of 485 nm and 625 nm with 1.00-cm cells. 0.1 M NaOH A 485 0.075 A625 = 0.904 0.1 М HСІ A 485 0.487 A625 = 0.181 In the NaOH solution, essentially all of the indicator is present as In ; in the acidic solution, it is essentially all in the form of HIn. (a) Calculate molar absorptivities for In and HIn at 485 and 625 nm. (b) Calculate the acid dissociation constant for the indicator if a pH 5.00 buffer containing a small amount of the indicator exhibits an absorbance of 0.567 at 485 nm and 0.395 at 625 nm (1.00-cm cells). (c) What is the pH of a solution containing a small amount of the indicator that exhibits an absorbance of 0.492 at 485 nm and 0.245 at 635 nm (1.00-cm cells)? (d) A 25.00-mL aliquot of a solution of purified weak organic acid HX required exactly 24.20 mL of a stan- dard solution of a strong base to reach a phenolphthalein end point. When exactly 12.10 mL of the base was added to a second 25.00-mL aliquot of the acid, which contained a small amount of the indicator under consideration, the absorbance was found to be 0.333 at 485 nm and 0.655 at 625 nm (1.00-cm cells). Ca ulate the pH of the solution and K, the wea acid. (e) What would be the absorbance of a solution at 485 and 625 nm (1.50-cm cells) that was 2.00 × 10-4 M in the indicator and was buffered to a pH of 6.000?
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 5 images
Recommended textbooks for you
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY