14.11. As we explained in Chapter 7, the air resistance to motion of a vehicle is something important that engineers investigate. As you may also know, the drag force acting on a car is determined experimentally by placing the car in a wind tunnel. The air speed inside the tunnel is changed, and the drag force acting on the car is measured. For a given car, the experimental data is generally represented by a single coefficient that is called drag coefficient. It is defined by the following relationship: Fa Cả where Ca = drag coefficient (unitless) Fa = measured drag force (N or 1b) p= air density (kg/m³ or slugs/ft') V = air speed inside the wind tunnel (m/s or ft/s) A = frontal area of the car (m? or ft') The frontal area A represents the frontal projection of the car's area and could be approximated simply by multiplying 0.85 times the width and the height of a rectangle that outlines the front of a car. This is the area that you see when you view the car from a direction normal to the front grills. The 0.85 factor is used to adjust for rounded comers, open space below the bumper, and so on. To give you some idea, typical drag coefficient values for sports cars are between 0.27 to 0.38, and for sedans are between 0.34 to 0.5. The power requirement to overcome air resistance is computed by P= F,V where P= power (watts or ft· lb/s) 1 horse power (hp) = 550 ft lb/s and 1 horse power (hp) = 746 W The purpose of this exercise is to see how the power requirement changes with the car speed and the air temperature. Determine the power requirement to overcome air resistance for a car that has a listed drag coefficient of 0.4 and width of 74.4 in. and height of 57.4 in. Vary the air speed in the range of 15 m/s < V < 35 m/s, and change the air density range of 1.11 kg/m³
14.11. As we explained in Chapter 7, the air resistance to motion of a vehicle is something important that engineers investigate. As you may also know, the drag force acting on a car is determined experimentally by placing the car in a wind tunnel. The air speed inside the tunnel is changed, and the drag force acting on the car is measured. For a given car, the experimental data is generally represented by a single coefficient that is called drag coefficient. It is defined by the following relationship: Fa Cả where Ca = drag coefficient (unitless) Fa = measured drag force (N or 1b) p= air density (kg/m³ or slugs/ft') V = air speed inside the wind tunnel (m/s or ft/s) A = frontal area of the car (m? or ft') The frontal area A represents the frontal projection of the car's area and could be approximated simply by multiplying 0.85 times the width and the height of a rectangle that outlines the front of a car. This is the area that you see when you view the car from a direction normal to the front grills. The 0.85 factor is used to adjust for rounded comers, open space below the bumper, and so on. To give you some idea, typical drag coefficient values for sports cars are between 0.27 to 0.38, and for sedans are between 0.34 to 0.5. The power requirement to overcome air resistance is computed by P= F,V where P= power (watts or ft· lb/s) 1 horse power (hp) = 550 ft lb/s and 1 horse power (hp) = 746 W The purpose of this exercise is to see how the power requirement changes with the car speed and the air temperature. Determine the power requirement to overcome air resistance for a car that has a listed drag coefficient of 0.4 and width of 74.4 in. and height of 57.4 in. Vary the air speed in the range of 15 m/s < V < 35 m/s, and change the air density range of 1.11 kg/m³
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 7 steps with 7 images
Recommended textbooks for you
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning