11. When a charged particle moves with velocity v through a magnetic field B, a force due to the magnetic field FB acts on the charged particle. This occurs according to the cross-product: FB = qv x B where q is the charge of the particle. (a) If a particle of charge q = 13.4 x 10-6C, where the unit C is a Coulomb, moves according to the velocity vector v = (1,5, 2) and the magnetic field vector is B = (4, 2, -1), find the force vector FB that is acting on the particle. (b) What is the magnitude of the force on the particle? (c) Sketch the right-handed system {v, B, FB} and roughly indicate the trajectory of the particle.
11. When a charged particle moves with velocity v through a magnetic field B, a force due to the magnetic field FB acts on the charged particle. This occurs according to the cross-product: FB = qv x B where q is the charge of the particle. (a) If a particle of charge q = 13.4 x 10-6C, where the unit C is a Coulomb, moves according to the velocity vector v = (1,5, 2) and the magnetic field vector is B = (4, 2, -1), find the force vector FB that is acting on the particle. (b) What is the magnitude of the force on the particle? (c) Sketch the right-handed system {v, B, FB} and roughly indicate the trajectory of the particle.
Related questions
Question
Please show all work!
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 22 images