10. Every positive integer greater than 1 has at least two divisors and can be written as a unique product of some prime number/s with exponents. For example, 5 = 5'has two divisors (1 and 5 itself) 6 = 2' x 3' has four divisors (1, 2, 3 and 6) 16 = 2* has five divisors (1, 2, 4, 8 and 16). a, If a number n = p," × p,' × p, x. x px P,'where p,, p, P3 Pr-1 Prare prime numbers and a,, a,, a, . a a, are the corresponding exponents of the prime numbers, how many divisors does n have ?

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
10. Every positive integer greater than 1 has at least two divisors and can be written as a unique
product of some prime number/s with exponents. For example,
5 = 5'has two divisors (1 and 5 itself)
6 = 2' x 3' has four divisors (1, 2, 3 and 6)
16 = 2* has five divisors (1, 2, 4, 8 and 16).
a.
If a number n = p,' × p,´ × p,' ×. x P x Prwhere p,, P» P3… Pk-1' Pqare prime
numbers and a,, a,, a, . a a are the corresponding exponents of the prime numbers, how
many divisors does n have ?
Transcribed Image Text:10. Every positive integer greater than 1 has at least two divisors and can be written as a unique product of some prime number/s with exponents. For example, 5 = 5'has two divisors (1 and 5 itself) 6 = 2' x 3' has four divisors (1, 2, 3 and 6) 16 = 2* has five divisors (1, 2, 4, 8 and 16). a. If a number n = p,' × p,´ × p,' ×. x P x Prwhere p,, P» P3… Pk-1' Pqare prime numbers and a,, a,, a, . a a are the corresponding exponents of the prime numbers, how many divisors does n have ?
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON