1.9.5. Let a random variable $X$ of the continuous type have a pdf $f(x)$ whose graph is symmetric with respect to $x=c .$ If the mean value of $X$ exists, show that $E(X)=c$Hint: Show that $E(X-c)$ equals zero by writing $E(X-c)$ as the sum of two integrals: one from $-\infty$ to $c$ and the other from $c$ to $\infty .$ In the first, let $y=c-x$ and, in the second, $z=x-c .$ Finally, use the symmetry condition $f(c-y)=f(c+y)$ in the first.
1.9.5. Let a random variable $X$ of the continuous type have a pdf $f(x)$ whose graph is symmetric with respect to $x=c .$ If the mean value of $X$ exists, show that $E(X)=c$Hint: Show that $E(X-c)$ equals zero by writing $E(X-c)$ as the sum of two integrals: one from $-\infty$ to $c$ and the other from $c$ to $\infty .$ In the first, let $y=c-x$ and, in the second, $z=x-c .$ Finally, use the symmetry condition $f(c-y)=f(c+y)$ in the first.
1.9.5. Let a random variable $X$ of the continuous type have a pdf $f(x)$ whose graph is symmetric with respect to $x=c .$ If the mean value of $X$ exists, show that $E(X)=c$Hint: Show that $E(X-c)$ equals zero by writing $E(X-c)$ as the sum of two integrals: one from $-\infty$ to $c$ and the other from $c$ to $\infty .$ In the first, let $y=c-x$ and, in the second, $z=x-c .$ Finally, use the symmetry condition $f(c-y)=f(c+y)$ in the first.
1.9.5. Let a random variable $X$ of the continuous type have a pdf $f(x)$ whose graph is symmetric with respect to $x=c .$ If the mean value of $X$ exists, show that $E(X)=c$ Hint: Show that $E(X-c)$ equals zero by writing $E(X-c)$ as the sum of two integrals: one from $-\infty$ to $c$ and the other from $c$ to $\infty .$ In the first, let $y=c-x$ and, in the second, $z=x-c .$ Finally, use the symmetry condition $f(c-y)=f(c+y)$ in the first.
Definition Definition Probability of occurrence of a continuous random variable within a specified range. When the value of a random variable, Y, is evaluated at a point Y=y, then the probability distribution function gives the probability that Y will take a value less than or equal to y. The probability distribution function formula for random Variable Y following the normal distribution is: F(y) = P (Y ≤ y) The value of probability distribution function for random variable lies between 0 and 1.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.