1. Prove that Vk € N, 1k + 2k + . . . +nk € ©(nk+1). 2. Suppose that the functions f1, f2, 91, 92 : N → R≥0 are such that f₁ = O(91) and ƒ2 Є ☹(92). Prove that (f1 + ƒ2) € ☹(max{91,92}). Here (f1 + f2)(n) = f1(n) + f2(n) and max{91, 92}(n) = max{91(n), 92(n)}. 3. Let n Є N\{0}. Describe the largest set of values n for which you think 2″ < n!. Use induction to prove that your description is correct. Here m! stands for m factorial, the product of first m positive integers. 4. Prove that log2 n! € O(n log n).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

Please help me with this question. I am having trouble understanding what to do. Please show all your work on paper

Course: Discrete mathematics for CS

Thank you

just question 3 & 4

1. Prove that
Vk € N, 1k + 2k + . . . +nk € ©(nk+1).
2. Suppose that the functions f1, f2, 91, 92 : N → R≥0 are such that f₁ = O(91) and ƒ2 Є ☹(92).
Prove that (f1 + ƒ2) € ☹(max{91,92}).
Here (f1 + f2)(n) = f1(n) + f2(n) and max{91, 92}(n) = max{91(n), 92(n)}.
3. Let n Є N\{0}. Describe the largest set of values n for which you think 2″ < n!. Use induction to
prove that your description is correct.
Here m! stands for m factorial, the product of first m positive integers.
4. Prove that log2 n! € O(n log n).
Transcribed Image Text:1. Prove that Vk € N, 1k + 2k + . . . +nk € ©(nk+1). 2. Suppose that the functions f1, f2, 91, 92 : N → R≥0 are such that f₁ = O(91) and ƒ2 Є ☹(92). Prove that (f1 + ƒ2) € ☹(max{91,92}). Here (f1 + f2)(n) = f1(n) + f2(n) and max{91, 92}(n) = max{91(n), 92(n)}. 3. Let n Є N\{0}. Describe the largest set of values n for which you think 2″ < n!. Use induction to prove that your description is correct. Here m! stands for m factorial, the product of first m positive integers. 4. Prove that log2 n! € O(n log n).
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
steps

Unlock instant AI solutions

Tap the button
to generate a solution

Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning