- - 1. For any x, y € R², define d₁ (x, y) = max{|x1 — Y₁|, |x2 — Y2|}. Prove that d₁ is a metrics on R². 2. For any x, y ER², define d₂ (x, y) = |x1 − Y1| + |x2 − y2|. Prove that d2 is a metrics on R².

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
## Metrics on \( \mathbb{R}^2 \)

1. **Metric Definition Using Maximum Function**

   For any \( x, y \in \mathbb{R}^2 \), define the distance function \( d_1(x, y) \) as follows:
   \[
   d_1(x, y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}
   \]
   **Objective:** Prove that \( d_1 \) is a metric on \( \mathbb{R}^2 \).

2. **Metric Definition Using Absolute Values**

   For any \( x, y \in \mathbb{R}^2 \), define the distance function \( d_2(x, y) \) as follows:
   \[
   d_2(x, y) = |x_1 - y_1| + |x_2 - y_2|
   \]
   **Objective:** Prove that \( d_2 \) is a metric on \( \mathbb{R}^2 \).
Transcribed Image Text:## Metrics on \( \mathbb{R}^2 \) 1. **Metric Definition Using Maximum Function** For any \( x, y \in \mathbb{R}^2 \), define the distance function \( d_1(x, y) \) as follows: \[ d_1(x, y) = \max\{|x_1 - y_1|, |x_2 - y_2|\} \] **Objective:** Prove that \( d_1 \) is a metric on \( \mathbb{R}^2 \). 2. **Metric Definition Using Absolute Values** For any \( x, y \in \mathbb{R}^2 \), define the distance function \( d_2(x, y) \) as follows: \[ d_2(x, y) = |x_1 - y_1| + |x_2 - y_2| \] **Objective:** Prove that \( d_2 \) is a metric on \( \mathbb{R}^2 \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,