Show that (1,-3,-1) (-3,4,2) independent of path: ST 38 D 38 58 58 Əh ?z Əh ?x || || 11 || ƒ dx + gdy + hdz = f(¹,−3,−¹) 10xy¹z²dx + 20y³x²z²dy + 10zy¹x²dz is Therefore curl F = (1,-3,-1) 10xy¹z²dx + 20y³x²z²dy + 10zy ¹x²dz =
Show that (1,-3,-1) (-3,4,2) independent of path: ST 38 D 38 58 58 Əh ?z Əh ?x || || 11 || ƒ dx + gdy + hdz = f(¹,−3,−¹) 10xy¹z²dx + 20y³x²z²dy + 10zy¹x²dz is Therefore curl F = (1,-3,-1) 10xy¹z²dx + 20y³x²z²dy + 10zy ¹x²dz =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Show that
(1,-3,-1)
(342) fdx+gdy+hdz = f(¹10xy¹z²dx + 20y³x²z²dy + 10zy¹x²dz is
independent of path:
Əh
ag
az
af
əz
Əh
?x
მg
?x
მყ
||
||
||
||
||
Therefore curl F =
•(1,−3,−1)
√(-3,4,2)
·(1,—3, 10xy¹z²dx + 20y³x²z²dy + 10zy¹x² dz =
(-3.4.2)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdbd5786d-c03d-4368-809a-5f6317a6d7c8%2Fa80cfee7-b397-4456-88e3-5524e844de41%2Fojjwdbh_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Show that
(1,-3,-1)
(342) fdx+gdy+hdz = f(¹10xy¹z²dx + 20y³x²z²dy + 10zy¹x²dz is
independent of path:
Əh
ag
az
af
əz
Əh
?x
მg
?x
მყ
||
||
||
||
||
Therefore curl F =
•(1,−3,−1)
√(-3,4,2)
·(1,—3, 10xy¹z²dx + 20y³x²z²dy + 10zy¹x² dz =
(-3.4.2)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)