1. For a bolted assembly with six bolts, the stiffness of each bolt is k» = 3 Mlbf/in and the stiffness of the members is km = 12 Mlbf/in per bolt. An external load of 80 kips is applied to the entire joint. Assume the load is equally distributed to all the bolts. It has been determined to use 1/2 in-13 UNC grade 8 bolts with rolled threads. Assume a torque co-efficient of K = 0.2. a. Determine the maximum bolt preload that can be applied without exceeding the proof strength of the bolts. b. Determine the minimum bolt preload that can be applied while avoiding joint separation. c. Determine the value of torque in units of Ibf-ft that should be specified for preloading the bolts if it is desired to preload to 75% of the proof load. d. Determine the yielding factor of safety for part c). (based on proof strength)

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%
1. For a bolted assembly with six bolts, the stiffness of each bolt is k, = 3 Mlbf/in and the stiffness of the
members is km = 12 Mlbf/in per bolt. An external load of 80 kips is applied to the entire joint. Assume
the load is equally distributed to all the bolts. It has been determined to use 1/2 in-13 UNC grade 8 bolts
with rolled threads. Assume a torque co-efficient of K = 0.2.
a. Determine the maximum bolt preload that can be applied without exceeding the proof strength of the
bolts.
b. Determine the minimum bolt preload that can be applied while avoiding joint separation.
c. Determine the value of torque in units of Ibf-ft that should be specified for preloading the bolts if it is
desired to preload to 75% of the proof load.
d. Determine the yielding factor of safety for part c). (based on proof strength)
Transcribed Image Text:1. For a bolted assembly with six bolts, the stiffness of each bolt is k, = 3 Mlbf/in and the stiffness of the members is km = 12 Mlbf/in per bolt. An external load of 80 kips is applied to the entire joint. Assume the load is equally distributed to all the bolts. It has been determined to use 1/2 in-13 UNC grade 8 bolts with rolled threads. Assume a torque co-efficient of K = 0.2. a. Determine the maximum bolt preload that can be applied without exceeding the proof strength of the bolts. b. Determine the minimum bolt preload that can be applied while avoiding joint separation. c. Determine the value of torque in units of Ibf-ft that should be specified for preloading the bolts if it is desired to preload to 75% of the proof load. d. Determine the yielding factor of safety for part c). (based on proof strength)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Metrology of Screw Threads
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY