1. An estate agent realises that prospective buyers are looking to buy larger houses that can accommodate an extended family. In a small study of 150 properties, he recorded the last year's sales, considering the duration from the date of entering the market up to the sale date. He denoted this duration as 'on market' and recorded it in months. He also recorded the size in square meters of each of the houses that were sold and the previous selling price. A partial data set is given below. Table: SALE Sale 0 1 1 0 On market (in months) 13 X₂ = SIZE X₂= PREPRICE 4 3 8 Size (in 100sq. meters) 1.15 2.32 3.50 1.30 The data of SALE was derived by using the following coding scheme X₁ MONTHS PrePrice (in R1000.00) 950 500 600 800 P = SALE (1= quick sale and 0= slow sale) The estate agent modelled the data with a logistic regression function and SAS provided the following maximum likelihood estimates of Bo. Bland B₂. bo=1.177, b₁ = -0.073 b₂ = 0.098 and b₂ = 0.005 1.1. Interpret all the estimated regression coefficients. 1.2. Find the odds ratio for b,and b₂ and give an interpretation of each. 1.3. What is the estimated probability of quick sale for a house that has been on the market for 3 months and has a size of 200 sq. meters and sold previously for R360 000.00? 1.4. Refer to Question 1.3. Find the odds of 3 months and then for 4 months and explain if sq m is still 200 and the previous price is still R360 000.00. Comment on the results. 1.5. Estimate the square meters of a house that is on the market for 2 months and the previous price was R300 000.00 for which there is an 80% chance of having a quick sale.
1. An estate agent realises that prospective buyers are looking to buy larger houses that can accommodate an extended family. In a small study of 150 properties, he recorded the last year's sales, considering the duration from the date of entering the market up to the sale date. He denoted this duration as 'on market' and recorded it in months. He also recorded the size in square meters of each of the houses that were sold and the previous selling price. A partial data set is given below. Table: SALE Sale 0 1 1 0 On market (in months) 13 X₂ = SIZE X₂= PREPRICE 4 3 8 Size (in 100sq. meters) 1.15 2.32 3.50 1.30 The data of SALE was derived by using the following coding scheme X₁ MONTHS PrePrice (in R1000.00) 950 500 600 800 P = SALE (1= quick sale and 0= slow sale) The estate agent modelled the data with a logistic regression function and SAS provided the following maximum likelihood estimates of Bo. Bland B₂. bo=1.177, b₁ = -0.073 b₂ = 0.098 and b₂ = 0.005 1.1. Interpret all the estimated regression coefficients. 1.2. Find the odds ratio for b,and b₂ and give an interpretation of each. 1.3. What is the estimated probability of quick sale for a house that has been on the market for 3 months and has a size of 200 sq. meters and sold previously for R360 000.00? 1.4. Refer to Question 1.3. Find the odds of 3 months and then for 4 months and explain if sq m is still 200 and the previous price is still R360 000.00. Comment on the results. 1.5. Estimate the square meters of a house that is on the market for 2 months and the previous price was R300 000.00 for which there is an 80% chance of having a quick sale.
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 6 steps with 7 images
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman