-1 onto the line through 4 -3 and the origin. Compute the orthogonal projection of The orthogonal projection is
-1 onto the line through 4 -3 and the origin. Compute the orthogonal projection of The orthogonal projection is
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Orthogonal Projection Problem
**Problem Statement:**
Compute the orthogonal projection of \(\begin{bmatrix} -1 \\ 4 \end{bmatrix}\) onto the line through \(\begin{bmatrix} -3 \\ 5 \end{bmatrix}\) and the origin.
**Solution:**
The orthogonal projection is \(\begin{bmatrix} \boxed{} \\ \boxed{} \end{bmatrix}\).
Enter your answer in the edit fields and then click "Check Answer."
**Note:**
For computing the orthogonal projection of a vector \(\mathbf{a}\) onto another vector \(\mathbf{b}\), use the formula:
\[
\text{proj}_{\mathbf{b}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}
\]
where \(\mathbf{a} \cdot \mathbf{b}\) is the dot product of vectors \(\mathbf{a}\) and \(\mathbf{b}\).
### Instructions:
1. Calculate the dot product of the vectors.
2. Find the magnitude squared of vector \(\mathbf{b}\).
3. Use the projection formula to find the result.
4. Fill in the boxes provided with the correct values.
**Diagram and Explanation:**
(In this case, there are no diagrams provided. An explanation of steps and formulae is included above.)
After computing, enter your answers and click "Check Answer" to verify.
### Example Calculation:
Given:
\(\mathbf{a} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}\)
1. Compute the dot product \(\mathbf{a} \cdot \mathbf{b}\):
\[
\mathbf{a} \cdot \mathbf{b} = (-1)(-3) + (4)(5) = 3 + 20 = 23
\]
2. Compute \(\mathbf{b} \cdot \mathbf{b}\):
\[
\mathbf{b} \cdot \mathbf{b} = (-3)^2 + 5^2 = 9 + 25 = 34
\]
3. Use the projection](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F05b5783f-5507-4009-950e-cf9b7485abe1%2F1723bb22-aea6-4891-b68b-ef7a11ba91be%2F8fjt9jn_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Orthogonal Projection Problem
**Problem Statement:**
Compute the orthogonal projection of \(\begin{bmatrix} -1 \\ 4 \end{bmatrix}\) onto the line through \(\begin{bmatrix} -3 \\ 5 \end{bmatrix}\) and the origin.
**Solution:**
The orthogonal projection is \(\begin{bmatrix} \boxed{} \\ \boxed{} \end{bmatrix}\).
Enter your answer in the edit fields and then click "Check Answer."
**Note:**
For computing the orthogonal projection of a vector \(\mathbf{a}\) onto another vector \(\mathbf{b}\), use the formula:
\[
\text{proj}_{\mathbf{b}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}
\]
where \(\mathbf{a} \cdot \mathbf{b}\) is the dot product of vectors \(\mathbf{a}\) and \(\mathbf{b}\).
### Instructions:
1. Calculate the dot product of the vectors.
2. Find the magnitude squared of vector \(\mathbf{b}\).
3. Use the projection formula to find the result.
4. Fill in the boxes provided with the correct values.
**Diagram and Explanation:**
(In this case, there are no diagrams provided. An explanation of steps and formulae is included above.)
After computing, enter your answers and click "Check Answer" to verify.
### Example Calculation:
Given:
\(\mathbf{a} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}\)
1. Compute the dot product \(\mathbf{a} \cdot \mathbf{b}\):
\[
\mathbf{a} \cdot \mathbf{b} = (-1)(-3) + (4)(5) = 3 + 20 = 23
\]
2. Compute \(\mathbf{b} \cdot \mathbf{b}\):
\[
\mathbf{b} \cdot \mathbf{b} = (-3)^2 + 5^2 = 9 + 25 = 34
\]
3. Use the projection
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)