Compute the orthogonal projection of v= 7 onto the line through 4 2 and the origin.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Orthogonal Projection onto a Line

#### Problem Statement
Compute the orthogonal projection of \( \mathbf{v} = \begin{bmatrix} 1 \\ 7 \end{bmatrix} \) onto the line through \( \begin{bmatrix} -4 \\ 2 \end{bmatrix} \) and the origin.

#### Explanation
In this problem, we are given a vector \(\mathbf{v}\) and asked to find its orthogonal projection onto a line passing through another vector and the origin. 

**Vector \(\mathbf{v}\)**:
\[ \mathbf{v} = \begin{bmatrix} 1 \\ 7 \end{bmatrix} \]

**Point on the line**:
\[ \begin{bmatrix} -4 \\ 2 \end{bmatrix} \]

The formula for the orthogonal projection of a vector \(\mathbf{v}\) onto a vector \(\mathbf{u}\) is given by:
\[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \]
where:
- \( \cdot \) denotes the dot product.

Let's proceed step by step to solve this.

##### Step 1: Calculate the dot product \(\mathbf{v} \cdot \mathbf{u}\)
Given, \(\mathbf{u} = \begin{bmatrix} -4 \\ 2 \end{bmatrix}\),
\[ \mathbf{u} \cdot \mathbf{v} = (-4 \times 1) + (2 \times 7) = -4 + 14 = 10 \]

##### Step 2: Calculate the dot product \(\mathbf{u} \cdot \mathbf{u}\)
\[ \mathbf{u} \cdot \mathbf{u} = (-4 \times -4) + (2 \times 2) = 16 + 4 = 20 \]

##### Step 3: Calculate the projection
\[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{10}{20} \begin{bmatrix} -4 \\ 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix
Transcribed Image Text:### Orthogonal Projection onto a Line #### Problem Statement Compute the orthogonal projection of \( \mathbf{v} = \begin{bmatrix} 1 \\ 7 \end{bmatrix} \) onto the line through \( \begin{bmatrix} -4 \\ 2 \end{bmatrix} \) and the origin. #### Explanation In this problem, we are given a vector \(\mathbf{v}\) and asked to find its orthogonal projection onto a line passing through another vector and the origin. **Vector \(\mathbf{v}\)**: \[ \mathbf{v} = \begin{bmatrix} 1 \\ 7 \end{bmatrix} \] **Point on the line**: \[ \begin{bmatrix} -4 \\ 2 \end{bmatrix} \] The formula for the orthogonal projection of a vector \(\mathbf{v}\) onto a vector \(\mathbf{u}\) is given by: \[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \] where: - \( \cdot \) denotes the dot product. Let's proceed step by step to solve this. ##### Step 1: Calculate the dot product \(\mathbf{v} \cdot \mathbf{u}\) Given, \(\mathbf{u} = \begin{bmatrix} -4 \\ 2 \end{bmatrix}\), \[ \mathbf{u} \cdot \mathbf{v} = (-4 \times 1) + (2 \times 7) = -4 + 14 = 10 \] ##### Step 2: Calculate the dot product \(\mathbf{u} \cdot \mathbf{u}\) \[ \mathbf{u} \cdot \mathbf{u} = (-4 \times -4) + (2 \times 2) = 16 + 4 = 20 \] ##### Step 3: Calculate the projection \[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{10}{20} \begin{bmatrix} -4 \\ 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,