9 "[] 7 Compute the orthogonal projection of The orthogonal projection is (Simplify your answer.) onto the line through ... - 3 6 and the origin.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Compute the orthogonal projection of the vector \(\begin{bmatrix} 9 \\ 7 \end{bmatrix}\) onto the line through the vector \(\begin{bmatrix} -3 \\ 6 \end{bmatrix}\) and the origin.

**Solution:**

To find the orthogonal projection of a vector \(\mathbf{v}\) onto another vector \(\mathbf{u}\), use the formula:

\[
\text{proj}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}
\]

Where:
- \(\mathbf{v} = \begin{bmatrix} 9 \\ 7 \end{bmatrix}\)
- \(\mathbf{u} = \begin{bmatrix} -3 \\ 6 \end{bmatrix}\)

1. Compute the dot product \(\mathbf{v} \cdot \mathbf{u}\):

\[
\begin{bmatrix} 9 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 6 \end{bmatrix} = 9(-3) + 7(6) = -27 + 42 = 15
\]

2. Compute the dot product \(\mathbf{u} \cdot \mathbf{u}\):

\[
\begin{bmatrix} -3 \\ 6 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 6 \end{bmatrix} = (-3)^2 + 6^2 = 9 + 36 = 45
\]

3. Compute the orthogonal projection:

\[
\text{proj}_{\mathbf{u}} \mathbf{v} = \frac{15}{45} \begin{bmatrix} -3 \\ 6 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -3 \\ 6 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}
\]

**Conclusion:**

The orthogonal projection is \(\begin{bmatrix} -1 \\ 2 \end{bmatrix}\).

(Simplify your answer.)
Transcribed Image Text:**Problem Statement:** Compute the orthogonal projection of the vector \(\begin{bmatrix} 9 \\ 7 \end{bmatrix}\) onto the line through the vector \(\begin{bmatrix} -3 \\ 6 \end{bmatrix}\) and the origin. **Solution:** To find the orthogonal projection of a vector \(\mathbf{v}\) onto another vector \(\mathbf{u}\), use the formula: \[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \] Where: - \(\mathbf{v} = \begin{bmatrix} 9 \\ 7 \end{bmatrix}\) - \(\mathbf{u} = \begin{bmatrix} -3 \\ 6 \end{bmatrix}\) 1. Compute the dot product \(\mathbf{v} \cdot \mathbf{u}\): \[ \begin{bmatrix} 9 \\ 7 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 6 \end{bmatrix} = 9(-3) + 7(6) = -27 + 42 = 15 \] 2. Compute the dot product \(\mathbf{u} \cdot \mathbf{u}\): \[ \begin{bmatrix} -3 \\ 6 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 6 \end{bmatrix} = (-3)^2 + 6^2 = 9 + 36 = 45 \] 3. Compute the orthogonal projection: \[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{15}{45} \begin{bmatrix} -3 \\ 6 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -3 \\ 6 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \] **Conclusion:** The orthogonal projection is \(\begin{bmatrix} -1 \\ 2 \end{bmatrix}\). (Simplify your answer.)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,