1 2 3 4 5 6 7 8 9 ) Example 4.7-3: Methanol is produced in the reaction of carbon dioxide and hydrogen: CO₂ + 3H₂CH₂OH + H₂O DO The fresh feed to the process contains hydrogen, carbon dioxide, and 0.400 mole% inert (1). The reactor effluent passes to a condenser that removes essentially all of the methanol and water formed and none of the reactants or inert. The latter substances are recycled to the reactor. To avoid buildup of the inert in the system, a purge stream is withdrawn from the recycle. انجن The feed to the reactor (not the fresh feed to the process) contains 28.0 mole % CO₂ 70.0 mole% H₂, and 2.0 mole% inert. The single-pass conversion of hydrogen is 60.0%. Calculate the molar flow rates and molar compositions of the fresh feed, the total feed to the reactor, the recycle stream, and the purge stream for a methanol production rate of 155 kmol CH3OH/h. Solution Basis: 100 mol Combined Feed to the Reactor no(mol) Toc(mol CO₂/mol) (0.996-xoc) (mol H₂/mol) 0.00400 mol V/mol Overall System 7 Unknowns no, Xoc, N3, N4, np, XSC, XSH -5 balances اكل CO2, H2, I, CH3OH, H20 3 df n(mol) sc(mol CO₂/mol) SH(mol H₂/mol) (1-x5c-x5H) (mol I/mol) 100 mol 0.280 mol CO₂/mol 0.700 mol H₂/mol 0.020 mol I/mol Reactor 4 Unknowns Degree-of-Freedom Analysis n1, 12, 13, 14 - 4 balances REACTOR CO2, H2, CH3OH, H20 0 df (mol CO₂) n₂(mol H₂) 2.0 mol n3(mol CH3OH) na(mol H₂O) Condenser 3 Unknowns ns, XSC, XSH -3 balances CO2, H2, I 0 df mp(mol) sc(mol CO₂/mol) *5H(mol H₂/mol) (1-x5c-x5H) (mol I/mol) ng(mol) sc(mol CO₂/mol) TSH(mol H₂/mol) (1-x5c-x5H) (mol l/mol) CONDENSER Mixing Point 5 Unknowns no, Xoc n X5C, XSH -3 balances CO2, H2, I 2 df ng(mol CH3OH) ng(mol H₂O) Splitting Point 2 unknowns ny, np -1 balance 1 df
1 2 3 4 5 6 7 8 9 ) Example 4.7-3: Methanol is produced in the reaction of carbon dioxide and hydrogen: CO₂ + 3H₂CH₂OH + H₂O DO The fresh feed to the process contains hydrogen, carbon dioxide, and 0.400 mole% inert (1). The reactor effluent passes to a condenser that removes essentially all of the methanol and water formed and none of the reactants or inert. The latter substances are recycled to the reactor. To avoid buildup of the inert in the system, a purge stream is withdrawn from the recycle. انجن The feed to the reactor (not the fresh feed to the process) contains 28.0 mole % CO₂ 70.0 mole% H₂, and 2.0 mole% inert. The single-pass conversion of hydrogen is 60.0%. Calculate the molar flow rates and molar compositions of the fresh feed, the total feed to the reactor, the recycle stream, and the purge stream for a methanol production rate of 155 kmol CH3OH/h. Solution Basis: 100 mol Combined Feed to the Reactor no(mol) Toc(mol CO₂/mol) (0.996-xoc) (mol H₂/mol) 0.00400 mol V/mol Overall System 7 Unknowns no, Xoc, N3, N4, np, XSC, XSH -5 balances اكل CO2, H2, I, CH3OH, H20 3 df n(mol) sc(mol CO₂/mol) SH(mol H₂/mol) (1-x5c-x5H) (mol I/mol) 100 mol 0.280 mol CO₂/mol 0.700 mol H₂/mol 0.020 mol I/mol Reactor 4 Unknowns Degree-of-Freedom Analysis n1, 12, 13, 14 - 4 balances REACTOR CO2, H2, CH3OH, H20 0 df (mol CO₂) n₂(mol H₂) 2.0 mol n3(mol CH3OH) na(mol H₂O) Condenser 3 Unknowns ns, XSC, XSH -3 balances CO2, H2, I 0 df mp(mol) sc(mol CO₂/mol) *5H(mol H₂/mol) (1-x5c-x5H) (mol I/mol) ng(mol) sc(mol CO₂/mol) TSH(mol H₂/mol) (1-x5c-x5H) (mol l/mol) CONDENSER Mixing Point 5 Unknowns no, Xoc n X5C, XSH -3 balances CO2, H2, I 2 df ng(mol CH3OH) ng(mol H₂O) Splitting Point 2 unknowns ny, np -1 balance 1 df
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 11 images
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The