0.191 0.193 0.198 0.199 O 0.211 0.211 0.233 0.247 0.263 0.273 0.290 0.290 0.304 0.306 0.306 0.313 Suppose a sample of 0-rings was obtained and the wall thickness (in inches) of each was recorded. Use a normal probability plot to assess whether the sample data could have come from a population that is normally distributed. Click here to view the table of critical values. Click here to view page 1 of the standard normal distribution table Click here to view page 2 of the standard normal distribution table. Using the correlation coefficient of the normal probability plot, is it reasonable to conclude that the population is normally distributed? Select the correct choice below and fill in the answer boxes within your choice. (Round to three decimal places as needed.) O A. Yes. The correlation between the expected z-scores and the observed data, , exceeds the critical value,. Therefore, it is reasonable to conclude that the data come from a normal population. O B. No. The correlation between the expected z-scores and the observed data, normal population. Therefore, it is reasonable to conclude that the data come from a does not exceed the aritical value, OC. No. The correlation between the expected z-scores and the observed data,, does not exceed the critical value, . Therefore, it is not reasonable to conclude that the data come from a normal population. O D. Yes. The correlation between the expected z-scores and the observed data, normal population. exceeds the critical value, Therefore, it is not reasonable to conclude that the data come from a

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question

Sample​ Size n     Critical Value

5                           0.880

6                           0.888

7.                           0.898

8.                          0.906

9.                           0.912

10.                        0.918

11.                       0.923

12.                        0.928

13.                         0.932

14.                         0.935

15.                        0.939

16                        0.941

17.                       0.944

18.                     0.946

19.                    0.949

20.                  0.951

21.                 0.952

22.               0.954

23.                0.956

24.                0.957

25.               0.959

30.               0.960

Suppose a sample of O-rings was obtained and the wall thickness (in inches) of each was recorded. Use a normal probability plot to assess whether the sample
data could have come from a population that is normally distributed.
0.191 0.193 0.198 0.199 O
0.211 0.211 0.233 0.247
0.263 0.273 0.290 0.290
0.304 0.306 0.306 0.313
Click here to view the table of critical values.
Click here to view page 1 of the standard normal distribution table,
Click here to view page 2 of the standard normal distribution table.
Using the correlation coefficient of the normal probability plot, is it reasonable to conclude that the population is normally distributed? Select the correct choice below and fill in the answer boxes
within your choice.
(Round to three decimal places as needed.)
O A. Yes. The correlation between the expected z-scores and the observed data,
, exceeds the critical value,.
Therefore, it is reasonable to conclude that the data come from a normal
population.
O B. No. The correlation between the expected z-scores and the observed data,
, . does not exceed the critical value,. Therefore, it is reasonable to conclude that the data come from a
normal population.
OC. No. The correlation between the expected z-scores and the observed data,
does not exceed the critical value,
. Therefore, it is not reasonable to conclude that the data come
from a normal population.
O D. Yes. The correlation between the expected z-scores and the observed data,, exceeds the critical value,. Therefore, it is not reasonable to conclude that the data come from a
normal population.
Standard Normal Distribution, 1 of 2
Area
Standard Normal Distribution
0.00
0.01
0.02
003
0.04
0.06
0.09
0.0003
0.0005
0.0007
-14
0.0003
0.0005
0.0003
0.0005
0.0003
0.0004
0.0003
0.0004
0.0006
0.0008
0.0012
0.0003
0.0004
0.0006
0.0008
0.0011
0.0003
0,0004
0.0006
0.000
0.0011
0.0003
0.0004
0.0005
0.0008
0.0011
0.0003
0.0004
0.0002
0,0003
0,0007
0.0006
0.0006
0.0009
0.0012
0,0005
0.000s
0.0007
0.0007
0.0010
-A1
0.0010
0.0013
0.0009
0.0013
0.0009
0.0013
0.0010
-29
-28
-2.7
0,0019
0.0026
0,0035
0.0018
0.0025
0.0034
0.0017
0.0023
0.0032
0.0016
0.0023
0.0031
0.0041
0.0055
0.0016
0.0022
0.0030
0.0015
0,0021
0.0029
0.000
0.0052
0.0014
0.0020
0.0027
00018
00024
0.0033
0.0015
0.0021
0.0028
0,0014
0.0019
0.0026
-26
-2.5
0.0047
0.0045
0.0060
0.0044
0.0043
0.0057
0.0040
0.0037
0.0049
0.0036
0.0048
0.0062
0.0059
0.0054
0.0051
0.0OR2
00107
00139
00179
0.0228
0.0073
0.0095
0.0125
0.0162
0.017
0.0071
-24
-2.3
-2.2
0.000
0.0104
0,0136
0.0 174
0.0222
00078
00102
00132
0.0075
0.0099
0.0129
0.0060
0.0091
0.0119
0.0066
0,0087
0.0113
0.0064
0.0084
0.0094
0.0122
0.0158
0.0202
0.0089
00116
00150
0.0192
-2.1
-20
00170
0.0217
0.0166
0.0212
0.0154
0.0197
0,0143
00183
00146
0.0188
0.087
00390
0,0446
0,0548
0.0668
0.0274
0.0268
0.0
0.062
0.0320
0.0409
0.0256
0.0250
0.0314
0.0392
0.0239
0,0301
0.0375
0.0465
0.0571
0,0233
0.0204
0.0367
-1.9
0.028I
0.0351
0,0436
0.0537
0,0655
0.0044
0.0007
0.0384
0.0475
0.0582
-1.7
0.0427
0.0418
0.0101
-1.6
-1.5
00626
0.0643
0,0485
0.0594
0,0455
0,0559
0.0630
0.0618
0.0506
0.0778
0.0764
0.0740
0.0735
0.0721
0.0708
-14
-13
-12
0,0703
0.0951
0.1131
01335
0.1562
0.0604
0,0681
0.0823
0.0968
0.1151
00934
0.1112
0.0918
01093
0.1292
0.1515
0.0901
0.1075
0.1271
0.1402
0.1056
0.1251
0.140
0.0869
0.1038
0.1230
0.1446
0.1003
0.1190
0.1401
-11
-10
0.1357
0.17
01210
01423
0,1170
0.1379
0.1539
0.1841
02119
02420
0.1635
0.1894
0.2177
01814
0.178
0.2061
0.2158
0.2676
0.1762
02033
02327
0.2643
0.2981
0.1736
0.2005
0.2000
0,2389
02700
0.3050
0.1711
0.1977
0.2266
0.2578
0.2912
01685
0.1949
0,2236
0.2546
0,2877
01660
01922
02206
02514
02843
0.1611
0.1867
0.2148
0.2451
0,2776
1.7
0.2296
0.2611
0.2946
02743
0.2483
0.2810
0.3015
0,3446
0.3821
04207
04602
0,5000
0.3400
0.378
04168
042
04060
0.3372
03745
04129
04522
04920
0.3336
03707
04000
0443
04890
03300
03669
0.402
0.4443
0.4840
0.3264
0.3632
04013
0,3228
0.3504
0.3074
0464
04761
0.3192
03557
0.3036
04325
04721
0.3156
0.3520
0.3807
0426
04681
0,3121
0.3483
0.3850
0,4247
0,4641
-14
044
04801
0.02
0.06
Transcribed Image Text:Suppose a sample of O-rings was obtained and the wall thickness (in inches) of each was recorded. Use a normal probability plot to assess whether the sample data could have come from a population that is normally distributed. 0.191 0.193 0.198 0.199 O 0.211 0.211 0.233 0.247 0.263 0.273 0.290 0.290 0.304 0.306 0.306 0.313 Click here to view the table of critical values. Click here to view page 1 of the standard normal distribution table, Click here to view page 2 of the standard normal distribution table. Using the correlation coefficient of the normal probability plot, is it reasonable to conclude that the population is normally distributed? Select the correct choice below and fill in the answer boxes within your choice. (Round to three decimal places as needed.) O A. Yes. The correlation between the expected z-scores and the observed data, , exceeds the critical value,. Therefore, it is reasonable to conclude that the data come from a normal population. O B. No. The correlation between the expected z-scores and the observed data, , . does not exceed the critical value,. Therefore, it is reasonable to conclude that the data come from a normal population. OC. No. The correlation between the expected z-scores and the observed data, does not exceed the critical value, . Therefore, it is not reasonable to conclude that the data come from a normal population. O D. Yes. The correlation between the expected z-scores and the observed data,, exceeds the critical value,. Therefore, it is not reasonable to conclude that the data come from a normal population. Standard Normal Distribution, 1 of 2 Area Standard Normal Distribution 0.00 0.01 0.02 003 0.04 0.06 0.09 0.0003 0.0005 0.0007 -14 0.0003 0.0005 0.0003 0.0005 0.0003 0.0004 0.0003 0.0004 0.0006 0.0008 0.0012 0.0003 0.0004 0.0006 0.0008 0.0011 0.0003 0,0004 0.0006 0.000 0.0011 0.0003 0.0004 0.0005 0.0008 0.0011 0.0003 0.0004 0.0002 0,0003 0,0007 0.0006 0.0006 0.0009 0.0012 0,0005 0.000s 0.0007 0.0007 0.0010 -A1 0.0010 0.0013 0.0009 0.0013 0.0009 0.0013 0.0010 -29 -28 -2.7 0,0019 0.0026 0,0035 0.0018 0.0025 0.0034 0.0017 0.0023 0.0032 0.0016 0.0023 0.0031 0.0041 0.0055 0.0016 0.0022 0.0030 0.0015 0,0021 0.0029 0.000 0.0052 0.0014 0.0020 0.0027 00018 00024 0.0033 0.0015 0.0021 0.0028 0,0014 0.0019 0.0026 -26 -2.5 0.0047 0.0045 0.0060 0.0044 0.0043 0.0057 0.0040 0.0037 0.0049 0.0036 0.0048 0.0062 0.0059 0.0054 0.0051 0.0OR2 00107 00139 00179 0.0228 0.0073 0.0095 0.0125 0.0162 0.017 0.0071 -24 -2.3 -2.2 0.000 0.0104 0,0136 0.0 174 0.0222 00078 00102 00132 0.0075 0.0099 0.0129 0.0060 0.0091 0.0119 0.0066 0,0087 0.0113 0.0064 0.0084 0.0094 0.0122 0.0158 0.0202 0.0089 00116 00150 0.0192 -2.1 -20 00170 0.0217 0.0166 0.0212 0.0154 0.0197 0,0143 00183 00146 0.0188 0.087 00390 0,0446 0,0548 0.0668 0.0274 0.0268 0.0 0.062 0.0320 0.0409 0.0256 0.0250 0.0314 0.0392 0.0239 0,0301 0.0375 0.0465 0.0571 0,0233 0.0204 0.0367 -1.9 0.028I 0.0351 0,0436 0.0537 0,0655 0.0044 0.0007 0.0384 0.0475 0.0582 -1.7 0.0427 0.0418 0.0101 -1.6 -1.5 00626 0.0643 0,0485 0.0594 0,0455 0,0559 0.0630 0.0618 0.0506 0.0778 0.0764 0.0740 0.0735 0.0721 0.0708 -14 -13 -12 0,0703 0.0951 0.1131 01335 0.1562 0.0604 0,0681 0.0823 0.0968 0.1151 00934 0.1112 0.0918 01093 0.1292 0.1515 0.0901 0.1075 0.1271 0.1402 0.1056 0.1251 0.140 0.0869 0.1038 0.1230 0.1446 0.1003 0.1190 0.1401 -11 -10 0.1357 0.17 01210 01423 0,1170 0.1379 0.1539 0.1841 02119 02420 0.1635 0.1894 0.2177 01814 0.178 0.2061 0.2158 0.2676 0.1762 02033 02327 0.2643 0.2981 0.1736 0.2005 0.2000 0,2389 02700 0.3050 0.1711 0.1977 0.2266 0.2578 0.2912 01685 0.1949 0,2236 0.2546 0,2877 01660 01922 02206 02514 02843 0.1611 0.1867 0.2148 0.2451 0,2776 1.7 0.2296 0.2611 0.2946 02743 0.2483 0.2810 0.3015 0,3446 0.3821 04207 04602 0,5000 0.3400 0.378 04168 042 04060 0.3372 03745 04129 04522 04920 0.3336 03707 04000 0443 04890 03300 03669 0.402 0.4443 0.4840 0.3264 0.3632 04013 0,3228 0.3504 0.3074 0464 04761 0.3192 03557 0.3036 04325 04721 0.3156 0.3520 0.3807 0426 04681 0,3121 0.3483 0.3850 0,4247 0,4641 -14 044 04801 0.02 0.06
Standard Normal Distribution, 2 of 2
Standard Nonmal Distribution
0,00
02
0.03
0.04
0.05
0.09
0.5000
0.5398
0.57
0.5040
0.5438
0.S832
0.5080
0.5478
0.5871
06255
0.5279
0.5675
0.6064
0.6443
0.6808
0.5120
0.5160
0.5557
0.5948
06331
0.6700
0.5199
0.5596
0.SU87
0.5230
0.5636
0.6026
0.5319
0.5714
06103
0.5359
05751
06141
06817
0.6879
(LI
(1.2
0.5517
0.5010
06170
06217
06406
0640
0,6844
04
0,6664
0676
06772
0.5
0.
0.7224
0.7257
0.7580
0.7881
0.7291
0,7611
0.7910
0.7324
0.7642
0.7019
O212
0.2019
0,7357
0,7673
0,7967
0.8234
0.7054
0.7389
0.7704
0.7995
08264
07123
07454
0.7764
0.7157
0.7486
0.7794
0.7190
0.7517
0,723
0.7422
0.7734
0.7549
0.7852
(L7
0.8023
0.8078
08340
OR315
ORI
0.8413
0.8643
0.8849
0.9032
0.9192
08438
08665
0.8869
0,9040
0,9207
0461
0.848S
OAS31
08749
0.8944
1.1
1.2
1.3
14
0.8729
0.8925
O870
0.8962
09131
0.9279
0.8790
0.8980
0.0147
0.9292
0.8907
0.00R2
0.926
0.0115
0.9265
0.8997
0.9162
0.9306
0.9015
a9177
0.9319
0.9222
0,9345
0.9463
0.9564
09649
0.9719
0.9070
0.9484
0.9582
0.0664
0.0732
0.9251
0.9382
0.9495
09991
0.9671
0.994
0.950s
0.9590
0.9678
0,9744
1.5
16
1.7
0.9032
0.9452
0.0554
09641
0.9713
0.9057
09474
0.9573
09656
0.9726
0.9406
09515
0.9608
0.9418
0.9525
0.9616
0.9603
0.9756
0.9429
0.9535
0.9625
0.9441
0.9545
0.9600
0.9761
09706
09767
1.9
0.9750
2.0
2.1
2.2
2.3
24
0.9772
0.9821
0.978
0,9842
0.9878
09783
09830
0.97
0.9834
0.9871
0,9901
0.0025
0.9808
0.9850
0.9812
0.9854
0.97
0.9913
0.9934
0.9817
0.9857
0.9826
0.9864
0.9806
0.9920
0.9838
0.9875
0.904
0.9927
0.9846
0.988I
068
0.9906
0.9929
0.9909
0.9031
0.94
0.9911
0.9912
0.9916
0.9936
09022
2.5
2.6
2.7
0.003
0.9965
0.0074
0.9981
0,9940
0.9055
0.9966
0,9075
0.9982
09941
0.9056
0.9967
0,9943
0.0057
0.9068
0.0077
0.9983
0.9945
0.9959
0.9969
0.0977
0.9984
0.9946
0.90
0.9970
0.0078
0.9984
09948
0.9961
0.9971
0.9949
0.992
0.9972
0.9979
0.9985
0.9951
0.963
0.9973
0.9952
0.9964
0.9974
28
29
0.9076
0.9982
0.9979
0.9983
0.9ORI
0.9956
0.996
30
0.9087
0.9987
0.9987
0.998
0.9991
0.0004
0.9988
0.9992
0.9994
0.9989
0.9992
0.9989
0.9992
0.9904
0.9989
09992
0.9905
0.9990
0.9993
0.9995
0.9996
0.9007
0.9990
0.9993
0,9991
0.9003
09991
0.9994
3.2
0.0003
0.9004
09997
0.9998
0,9005
0.9996
0.9996
0.9006
0.9996
0.9996
34
0.0007
0,9007
0.9907
0.0007
0,9007
0.9997
0.02
0.04
0.05
0,08
0.09
Transcribed Image Text:Standard Normal Distribution, 2 of 2 Standard Nonmal Distribution 0,00 02 0.03 0.04 0.05 0.09 0.5000 0.5398 0.57 0.5040 0.5438 0.S832 0.5080 0.5478 0.5871 06255 0.5279 0.5675 0.6064 0.6443 0.6808 0.5120 0.5160 0.5557 0.5948 06331 0.6700 0.5199 0.5596 0.SU87 0.5230 0.5636 0.6026 0.5319 0.5714 06103 0.5359 05751 06141 06817 0.6879 (LI (1.2 0.5517 0.5010 06170 06217 06406 0640 0,6844 04 0,6664 0676 06772 0.5 0. 0.7224 0.7257 0.7580 0.7881 0.7291 0,7611 0.7910 0.7324 0.7642 0.7019 O212 0.2019 0,7357 0,7673 0,7967 0.8234 0.7054 0.7389 0.7704 0.7995 08264 07123 07454 0.7764 0.7157 0.7486 0.7794 0.7190 0.7517 0,723 0.7422 0.7734 0.7549 0.7852 (L7 0.8023 0.8078 08340 OR315 ORI 0.8413 0.8643 0.8849 0.9032 0.9192 08438 08665 0.8869 0,9040 0,9207 0461 0.848S OAS31 08749 0.8944 1.1 1.2 1.3 14 0.8729 0.8925 O870 0.8962 09131 0.9279 0.8790 0.8980 0.0147 0.9292 0.8907 0.00R2 0.926 0.0115 0.9265 0.8997 0.9162 0.9306 0.9015 a9177 0.9319 0.9222 0,9345 0.9463 0.9564 09649 0.9719 0.9070 0.9484 0.9582 0.0664 0.0732 0.9251 0.9382 0.9495 09991 0.9671 0.994 0.950s 0.9590 0.9678 0,9744 1.5 16 1.7 0.9032 0.9452 0.0554 09641 0.9713 0.9057 09474 0.9573 09656 0.9726 0.9406 09515 0.9608 0.9418 0.9525 0.9616 0.9603 0.9756 0.9429 0.9535 0.9625 0.9441 0.9545 0.9600 0.9761 09706 09767 1.9 0.9750 2.0 2.1 2.2 2.3 24 0.9772 0.9821 0.978 0,9842 0.9878 09783 09830 0.97 0.9834 0.9871 0,9901 0.0025 0.9808 0.9850 0.9812 0.9854 0.97 0.9913 0.9934 0.9817 0.9857 0.9826 0.9864 0.9806 0.9920 0.9838 0.9875 0.904 0.9927 0.9846 0.988I 068 0.9906 0.9929 0.9909 0.9031 0.94 0.9911 0.9912 0.9916 0.9936 09022 2.5 2.6 2.7 0.003 0.9965 0.0074 0.9981 0,9940 0.9055 0.9966 0,9075 0.9982 09941 0.9056 0.9967 0,9943 0.0057 0.9068 0.0077 0.9983 0.9945 0.9959 0.9969 0.0977 0.9984 0.9946 0.90 0.9970 0.0078 0.9984 09948 0.9961 0.9971 0.9949 0.992 0.9972 0.9979 0.9985 0.9951 0.963 0.9973 0.9952 0.9964 0.9974 28 29 0.9076 0.9982 0.9979 0.9983 0.9ORI 0.9956 0.996 30 0.9087 0.9987 0.9987 0.998 0.9991 0.0004 0.9988 0.9992 0.9994 0.9989 0.9992 0.9989 0.9992 0.9904 0.9989 09992 0.9905 0.9990 0.9993 0.9995 0.9996 0.9007 0.9990 0.9993 0,9991 0.9003 09991 0.9994 3.2 0.0003 0.9004 09997 0.9998 0,9005 0.9996 0.9996 0.9006 0.9996 0.9996 34 0.0007 0,9007 0.9907 0.0007 0,9007 0.9997 0.02 0.04 0.05 0,08 0.09
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman