.A 5-stage countercurrent absorber is used to absorb acetone from air into water at 3 atm pressure and 20°C. The total inlet gas flow rate is 100 kmol/h. The inlet gas is 0.004 mole fraction acetone. The inlet liquid contains 0.0001 mole fraction acetone. Outlet gas is 0.0002 mole fraction acetone. Assume total liquid and gas flow rates are constant. At 20°C the Henry's law constant for acetone in water is H = 1.186 atm/(mole fraction). Find the liquid flow rate required and the mole fraction acetone in the outlet liquid.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
. A 5-stage countercurrent absorber is used to absorb acetone from air into water at 3 atm pressure
and 20°C. The total inlet gas flow rate is 100 kmol/h. The inlet gas is 0.004 mole fraction acetone.
The inlet liquid contains 0.0001 mole fraction acetone. Outlet gas is 0.0002 mole fraction acetone.
Assume total liquid and gas flow rates are constant. At 20°C the Henry's law constant for acetone
in water is H = 1.186 atm/(mole fraction). Find the liquid flow rate required and the mole fraction
acetone in the outlet liquid.
Transcribed Image Text:. A 5-stage countercurrent absorber is used to absorb acetone from air into water at 3 atm pressure and 20°C. The total inlet gas flow rate is 100 kmol/h. The inlet gas is 0.004 mole fraction acetone. The inlet liquid contains 0.0001 mole fraction acetone. Outlet gas is 0.0002 mole fraction acetone. Assume total liquid and gas flow rates are constant. At 20°C the Henry's law constant for acetone in water is H = 1.186 atm/(mole fraction). Find the liquid flow rate required and the mole fraction acetone in the outlet liquid.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps with 1 images

Blurred answer
Knowledge Booster
Convective mass transfer between phases
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The