. Consider the transformation LA R³ R³, and a basis 3 = (v1, V2, V3) where 2 4 -2 --( :-)--) -- 0 -- 0 A = 1 2 -1 = 1 = 2 -3 -6 3 Find the matrix A' = [LA]. Also find an invertible matrix Q such that A' = Q-¹AQ. 2 -3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the transformation \( L_A : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \), and a basis \( \beta = (v_1, v_2, v_3) \) where

\[
A = \begin{pmatrix} 2 & 4 & -2 \\ 1 & 2 & -1 \\ -3 & -6 & 3 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.
\]

Find the matrix \( A' = [L_A]^\beta_\beta \). Also, find an invertible matrix \( Q \) such that \( A' = Q^{-1} A Q \).
Transcribed Image Text:Consider the transformation \( L_A : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \), and a basis \( \beta = (v_1, v_2, v_3) \) where \[ A = \begin{pmatrix} 2 & 4 & -2 \\ 1 & 2 & -1 \\ -3 & -6 & 3 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}. \] Find the matrix \( A' = [L_A]^\beta_\beta \). Also, find an invertible matrix \( Q \) such that \( A' = Q^{-1} A Q \).
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,