Stat_300_Fa23_Midterm_Exam (1)
pdf
keyboard_arrow_up
School
Rio Linda High *
*We aren’t endorsed by this school
Course
300
Subject
Statistics
Date
Jun 18, 2024
Type
Pages
7
Uploaded by ProfessorBook6413
Stat 300 — Introduction to Probability and Statistics
Midterm Exam
ARC Fall 2023 Chima Sanchez
Instructions
This exam is designed to assess your learning in the first half of Stat 300 for the Fall 2023
semester. Please complete all questions, showing your work as needed. If you are asked to
perform a calculation, show all work and/or explicitly state what functions you used on your
TI-84 calculator.
For all probability calculations, please express your answer as an exact fraction or decimal
number rounded to four places after the decimal, as appropriate, for full credit.
You are allowed to use your personal notes and a graphing calculator of your choice, but you
may
not
use the textbook, consult the Internet, use a math helper app such as PhotoMath,
use AI such as ChatGPT, or collaborate with others.
This exam has 12 questions, totalling 100 points toward your midterm exam grade category.
Honesty Statement
Before you begin, please read the following academic honesty statement and sign as indi-
cated on the line below.
Failure to sign will result in a zero grade
.
I certify that I am submitting my own original work and did not receive assistance from
others nor used any unauthorized aids. I understand that if I am found to have violated these
rules, my exam grade is automatically assigned a zero and may be reported to the Office of
Student Conduct.
Signature
Date
1
1. Describe the
type of data
and
level of measurement
in the variable given:
the
heights of 21–65 year-old women.
2. Please refer to the following scenario and Table 1:
a study was performed by the
American Medical Association to measure the effectiveness of a new software program
designed to help stroke patients regain their problem-solving skills. Patients were asked
to use the software program twice a day, once in the morning and once in the evening.
The study observed 200 stroke patients recovering over a period of several weeks.
Group
Showed Improvement
No Improvement
Deterioration
Used program
105
74
19
Did not use program
89
99
12
Table 1: Summarized data collected from stroke patients at end of study
The study sought informed consent from the participants, in which they were warned
of the risks of no improvement or deterioration in their condition, and subjects were
selected for the treatment group by randomization.
What kind of observational
study or experimental design was used here?
Be as descriptive as possible.
2
The variable "heights of 21-65-year-old women" is quantitative data as it involves numerical measurements and interval level of measurement as it allows for differences to be taken
A prospective study involves collecting data moving forward from groups that share common factors (cohorts). This scenario, stroke patients were tracked over time as they used the software program, and their progress was observed to measure the impact of the intervention on their problem-
solving skills. The study focused on observing the outcomes as the patients continued using the software over the study period, making it a prospective study or a cohort study.
3. Table 2 contains daily high temperatures for a Northern California town in the month
of April:
61
61
62
64
66
67
67
67
68
69
70
70
70
71
71
72
74
74
74
75
75
75
76
76
77
78
78
79
79
95
Table 2: Daily high temperatures for a Northern California town in the month of April.
Construct a
relative frequency distribution
for the data in Table 2 using a class width
of 5 and first lower class limit of 60.
4. Table 3 contains the distances between 20 retail stores and a large distribution center.
The distances are in miles.
29
37
38
40
58
67
68
69
76
86
87
95
96
96
99
106
112
127
145
150
Table 3: Distances (in miles) between 20 retail stores and a large distribution center.
Calculate the
mean
¯
x
of these distances. Round to the nearest tenth of a mile.
3
class
tally of temperatures
frequency
relative frequency
60-64
65-69
70-74
80-84
85-89
90-94
61, 61, 62, 64
66,67,67,67,68,69
70,70,70,71,71,72,74,74,74,75,75,75
none
none
95
4
6
12
9
75-79
75,75,76,76,77,78,78,79,79
0
0
1
4/30
≈0.133
6/30 ≈ 0.2
12.30 ≈ 0.4
9/30 ≈ .3
0
0
1/30
≈ 0.0
add up all the distances = 1488
x =1488/20
=74.4
Rounded to the nearest tenth of a mile, the mean distance is 74.4 miles.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
5. For the data in Table 3, calculate the
standard deviation
s
of the distances. Round
to the nearest hundredth of a mile.
6. For the data in Table 3, use the Strong Range Rule of Thumb to
identify any signif-
icant values
in the data set.
7. Two balanced dice are thrown and the sum of the rolls is observed. Find the probability
that the sum was
not
7.
4
squared differences from the mean for each distance
total: 12433.6
s ≈. 12433.6/20-1
s ≈. 654.4
s ≈ 25.57
Rounded to the nearest hundredth of a mile, the standard deviation of the distances is approximately 25.57 miles
Significantly low values for a population data set: μ
−2
σ= 74.4 − 2 × 25.57 =74.4 − 51.14 ≈23.26
Significantly high values for a population data set: μ+2σ= 74.4 + 2 × 25.57 = 74.4 + 51.14 ≈ 125.54
All values in the dataset ranging from 29 miles to 150 miles fall within the range of 23.26 to 125.54 miles. Therefore, based on this definition of the Strong Range Rule of Thumb, there are no significantly low or significantly high values in the dataset.
Outcomes that result in a sum of 7:
(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)
Therefore, the number of combinations that do not sum up to 7 is 36
−6=30.
The probability that the sum of the rolls is not 7 is the number of outcomes that do not sum up to 7 divided by the total number of outcomes:
Probability
= Total number of outcomes/Number of outcomes not summing to 7
= 30/36
= 5/6
Therefore, the probability that the sum of the rolls is not 7 is 5/6
8. Please refer to the table below.
Registered to vote
Not registered
Total
Aged 18-40
23
16
39
Aged 41+
44
12
56
Total
67
28
95
Table 4: Contingency table detailing the voter registration status and age of residents in
a community census.
Let
A
represent the event in which a person selected at random is aged between 18 and
40 and let
B
represent the event in which a person selected at random is registered to
vote.
a) Find
P
(
A
∪
¯
B
)
.
b) Find
P
(
A
|
B
)
.
c) Are
A
and
B
independent as probabilistic events? Justify your answer.
5
P(A
∪ B)=P(A)+P( B )−P(A∩B)
P(A) is the probability of being aged between 18-40.
P( B) is the probability of not being registered, which is 1
−
P(B).
P(A
∩B) is the probability of both being aged 18-40 and registered to vote.
P(A)
≈ 0.4105
P(B)
≈ 0.7053
P(B)=1
−
P(B)=1
−0.7053= 0.2947
P(A
∩B)≈ 0.2421 P(A
∪B)=0.4105+0.2947−0.2421≈ 0.4631
P(A
∪B)≈ 0.4631, which is the probability of being either aged 18-40 or not being registered to vote.
P(A
∩B)≈0.2421 (probability of being both aged 18-40 and registered to vote)
P(B)
≈0.7053 (probability of being registered to vote)
P(A
∣B)= P(B)/P(A∩B)
= 0.7053/0.2421
≈0.3431
P(A
∣B)≈0.3431, which is the probability of a person being aged between 18-40 given that the person is registered to vote.
In the case of independent events, if P(A
∩B)=P(A)×P(B), the events are independent. P(A
∩B)≈0.2421 is not equal to P(A)×P(B)
≈0.2893, which indicates that A and B are not independent events.
9. It’s estimated that 12% of the U.S. population has myopia, or nearsightedness. Suppose
a random sample of 15 people is drawn from the U.S. population using telephone polling
and
X
represents the number of people in the sample who have myopia.
a) What is the name and parameter(s) of the distribution of
X
? Specify the numerical
values of the parameters.
b) Find the probability that between 2 and 4 people in the sample have myopia.
10. For each part, find the probability and sketch the normal distribution density curve along
with the shaded area corresponding to the probability.
a) Find
P
(
Z
≤
2
.
72)
b) Find
P
(
X
≥
230)
when
X
is normally distributed with a mean of 200 and standard
deviation of 15.
6
n = the number of trials or sample size
p = the probability of success in a single trial
In this case:
n = 15 (the sample size)
p = 0.12 (the probability of a person having myopia)
The distribution of X, the number of people in the sample who have myopia, follows a binomial distribution with parameters n = 15 and p = 0.12.
n is the number of trials (sample size) = 15
p is the probability of success (probability of having myopia) = 0.12
P(X<2)=P(X=0)+P(X=1)
P(X<2) =(15/0)× 0.12 × (1
−0.12) ^15+( 15/1)×0.12^1×(1−0.12)^14
P(X<2)=0.0423+0.1897
≈0.232
P(X
≤4)= (15/0)×0.12^0×(1−0.12)^15+(15/1)×0.12^1×(1−0.12)^14+(15/2)×0.12^2×(1−0.12)^13 +
(15/3)×0.12^3×(1
−0.12)^12+(15/4)×0.12^4 ×(1−0.12)^11
P(X
≤4)=0.0423+0.1897+0.3115+0.2824+0.1468≈0.9727
P(2
≤X≤4)=P(X≤4)−P(X<2)
P(2
≤X≤4)≈0.9727−0.232≈0.7407
The probability that between 2 and 4 people in the sample have myopia is approximately 0.7407.
P(Z
≤2.72)≈0.9968
P(Z
≤2.72)≈0.9968
z= 230
−200/15
= 30/15
=2
P(X
≥230) by looking up the area to the right of z=2 in the standard normal distribution table or by using a calculator that provides cumulative probabilities for the standard normal distribution.
standard normal distribution table or a calculator, the probability P(X
≥230) is approximately 0.0228 or 2.28%.
230
mean 200
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
11. The age of Twitch stream viewers is normally distributed with a mean of 19 years old
and a standard deviation of 3 years. Find the 90th percentile of viewer age.
12. In an observational study, the number of daily spam calls received to the cell phones
of 50 randomly selected participants was recorded and found a mean of 6 and standard
deviation of 2.4. What is the probability that in a similar sample of 50 people, the mean
number of daily spam calls is at least 7?
7
X is the value you want to find (the 90th percentile in this case).
μ is the mean (19 years).
σ is the standard deviation (3 years).
1.28= X-19/3
X
−19=1.28×3
X
−19=3.84
X
≈22.84
the 90th percentile of the viewer age on Twitch is approximately 22.84 years old.
X = value you're interested in (in this case, 7)
μ = population mean
σ = population standard deviation
n = sample size
Given:
X=7
μ=6 (sample mean)
σ=2.4 (sample standard deviation)
n=50
Z= 7
−6/2.6/ 50
Z=1/2.4/ 50
Z= 2.4/7.071
Z
≈ 1/1.76875
Z
≈0.5658
the probability that in a similar sample of 50 people, the mean number of daily spam calls is at least 7 is approximately 28.61%.
Z=0.5658 is approximately 0.2861 or 28.61%.
Z=X- μ n
σ n
Related Documents
Related Questions
PLEASE DO PART D AND PART E
A research team is working on a project to study the time (in seconds) for high school male runners to finish a 400-meter race. Jimmy, a junior researcher in the team, has randomly selected a sample of 25 male runners from a high school and the time (in seconds) for each of them to complete a 400-meter race was recorded. The sample mean running time was 53 seconds. It is assumed that the running time in a 400-meter race follows a normal distribution with a population standard deviation of 5.5 seconds.(a) Give a point estimate of the population mean running time for a 400-meter race.(b) Calculate the sampling error at 95% confidence level.(c) Construct a 95% confidence interval estimate of the population mean running time for a 400-meter race.(d) If instead of 25, 80 male runners are selected for the study, what is the sampling error at 95% confidence level? When the 95% confidence interval is constructed based on a sample with 80 male runners, would you…
arrow_forward
I need help with where do I start learning statistics since I have never taken a course before. I am taking Data Analysis SOCI 253 this Spring Semester
arrow_forward
Please do not give solution in image format thanku
arrow_forward
Please answer all open blanks
arrow_forward
time of day measured in military time
arrow_forward
Prev
The following line graph shows the combined Math and English SAT score averages for Missouri from 1994 to 1998. Use the line graph to answer the
questions.
SAT Score Averages
1150
1140
1130
1120
1110
1100
State Combined SAT Score Averages: 1994 - 1998
1114
1994
1135
1995
1139
1996
Year
1135
1997
1143
1998
Ne
arrow_forward
Using excel, guess the temperature of the earth in 2050 from the data below
Year temperature (°C)
1880 -0.161881…
arrow_forward
Part 3 of 4
(c) Find the 20th
percentile.
The 20th
percentile is
Part 4 of 4
(d) Find the 66t
percentile.
th
The 66" percentile is
arrow_forward
A certain forest covers an area of 2000 km². Suppose that each year this area decreases by 5.5%. What will the area be after 12 years?
Use the calculator provided and round your answer to the nearest square kilometer.
2
П km²
arrow_forward
A May 2011 Gallup Poll found that many Americans believe in ghosts and other supernatural
phenomena. The poll was based on telephone responses from randomly selected adults. The
table shows the number of people who expressed belief in various phenomena.
Please finish the relative frequency table below, and please show your answers in decimals
2 decimal places.
Phenomenon
Frequency Relative Frequency
Psychic Healing
207
ESP
379
Ghosts
103
Astrology
431
Channeling
603
arrow_forward
pls help
arrow_forward
For the data set
1 3
4.
46
8.
9.
9.
12 12
13 15 15 16 16 16 17 18 19 20
24 24 24 24 25 25 26 27 27 28
31 31 34 34 34 35 35 39 39 43
45 45 46 48 48 51 52 52 52 55
Send data to Excel
Part 1 of 4
(a) Find the 81 percentile.
st
The 81 percentile is
Part 2 of 4
(b) Find the 44
percentile.
th
The 44 percentile is
arrow_forward
Hi,
Please see the question in the picture attached.
Textbook,
Probability and Statistics for Engineering and the Sciences (9th Edition)
Thank you.
arrow_forward
how do you get the frequency
arrow_forward
DataValues
2
7
7
7
10
33
44
70
72
76
94
98
What is the 65thPP ?
arrow_forward
Find the mean of these values assuming the first five values are each worth 10% and the last value is worth 50%
arrow_forward
Just the number 2, please
arrow_forward
just part E thank you!
arrow_forward
Solve all parts
arrow_forward
Download the file interceptor.ipynb. Instructions how to download notebook files are posted here. Open this file in Jupyter Notebook and play the interceptor game. Once
you win, enter below the data displayed on the final game screen.
You can also click on the Binder button below to launch an interactive version of the interceptor notebook. The game may take a a couple minutes to load and it may run slowly in
Binder.
launch binder
Enter the intial target position in the form [p1, p2]:
50
40-
30-
20-
10-
time: 3.20
target distance: 211.95
missile en route
0
-300
-200
-100
0
100
200
300
Select missile launch time to
arrow_forward
Ten out of every 32 people surveyed play among use. What percent of people surveyed play among use
arrow_forward
please provide the correct set of numbers for part A. Do NOT use chatgpt or AI. Please hand write the answers.
arrow_forward
PLEASE DO PART D
The education department has conducted a survey to review student’s language ability. A sample of 40 boys and 40 girls have been selected randomly selected for an aptitude test. The test result is that 28 boys pass the test, and 32 girls pass the test.(a) Give a point estimate of the population proportion of boys can pass the aptitude test.(b) Give a point estimate of the population proportion of girls can pass the aptitude test.(c) Use the combined data of 80 students, give a point estimate of the population proportion of students can pass the aptitude test.(d) Use the combined data of 80 students, construct a 95% confidence interval estimate of the population proportion of students can pass the aptitude test.
arrow_forward
In California, we need more rain to sustain the health of our natural environment, argriculture, and economic. A group of statistics students in Oxnard College recorded the amount of rain during 2016-2017 school year, measuring the intensity by the inches of rain, and the results were:
Inches of Rain123456Frequency145630
The mean (¯xx¯) rain intensity: inches (Please show your answer to 1 decimal place.)
The median rain intensity: inches
The mode rain intensity: inches (Please separate your answers by ',' in bimodal situation. Enter DNE if there is no mode.)
arrow_forward
Reattempt this question
When you are done, click here to see a summary of your score
Question with last attempt is displayed for your review only
Many investors and financial analysts believe the Dow Jones Industrial Average (DJIA) gives a good barometer of the
overall stock market. On January 31, 2006, 9 of the 30 stocks making up the DJIA increased in price (The Wall Street
Journal, February 1, 2006). On the basis of this fact, a financial analyst claims we can assume that 30% of the stocks
traded on the New York Stock Exchange (NYSE) went up the same day
A sample of 61 stocks traded on the NYSE that day showed that 29 went up.
You are conducting a study to see if the proportion of stocks that went up is is significantly more than 03. You use a
significance level of a 0.001.
What is the test statistic for this sample? (Report answer accurate to three
decimal places.)
test statistic =
What is the p-value for this sample? (Report answer accurate to four decimal places.)
p-value =
1S…
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Related Questions
- PLEASE DO PART D AND PART E A research team is working on a project to study the time (in seconds) for high school male runners to finish a 400-meter race. Jimmy, a junior researcher in the team, has randomly selected a sample of 25 male runners from a high school and the time (in seconds) for each of them to complete a 400-meter race was recorded. The sample mean running time was 53 seconds. It is assumed that the running time in a 400-meter race follows a normal distribution with a population standard deviation of 5.5 seconds.(a) Give a point estimate of the population mean running time for a 400-meter race.(b) Calculate the sampling error at 95% confidence level.(c) Construct a 95% confidence interval estimate of the population mean running time for a 400-meter race.(d) If instead of 25, 80 male runners are selected for the study, what is the sampling error at 95% confidence level? When the 95% confidence interval is constructed based on a sample with 80 male runners, would you…arrow_forwardI need help with where do I start learning statistics since I have never taken a course before. I am taking Data Analysis SOCI 253 this Spring Semesterarrow_forwardPlease do not give solution in image format thankuarrow_forward
- Please answer all open blanksarrow_forwardtime of day measured in military timearrow_forwardPrev The following line graph shows the combined Math and English SAT score averages for Missouri from 1994 to 1998. Use the line graph to answer the questions. SAT Score Averages 1150 1140 1130 1120 1110 1100 State Combined SAT Score Averages: 1994 - 1998 1114 1994 1135 1995 1139 1996 Year 1135 1997 1143 1998 Nearrow_forward
- Using excel, guess the temperature of the earth in 2050 from the data below Year temperature (°C) 1880 -0.161881…arrow_forwardPart 3 of 4 (c) Find the 20th percentile. The 20th percentile is Part 4 of 4 (d) Find the 66t percentile. th The 66" percentile isarrow_forwardA certain forest covers an area of 2000 km². Suppose that each year this area decreases by 5.5%. What will the area be after 12 years? Use the calculator provided and round your answer to the nearest square kilometer. 2 П km²arrow_forward
- A May 2011 Gallup Poll found that many Americans believe in ghosts and other supernatural phenomena. The poll was based on telephone responses from randomly selected adults. The table shows the number of people who expressed belief in various phenomena. Please finish the relative frequency table below, and please show your answers in decimals 2 decimal places. Phenomenon Frequency Relative Frequency Psychic Healing 207 ESP 379 Ghosts 103 Astrology 431 Channeling 603arrow_forwardpls helparrow_forwardFor the data set 1 3 4. 46 8. 9. 9. 12 12 13 15 15 16 16 16 17 18 19 20 24 24 24 24 25 25 26 27 27 28 31 31 34 34 34 35 35 39 39 43 45 45 46 48 48 51 52 52 52 55 Send data to Excel Part 1 of 4 (a) Find the 81 percentile. st The 81 percentile is Part 2 of 4 (b) Find the 44 percentile. th The 44 percentile isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning