Prelab-Shear Intro(1)
docx
keyboard_arrow_up
School
University of Massachusetts, Lowell *
*We aren’t endorsed by this school
Course
2960
Subject
Mechanical Engineering
Date
Apr 3, 2024
Type
docx
Pages
1
Uploaded by BailiffMetal722
Shear Testing
Introduction:
In preparation for our upcoming lab, you will combine what you have learned in our tensile tests and our
DIC labs to analyze a sample loaded in shear. To prepare for this lab, you are required to review the lab manual and perform a preliminary analysis of sample data. This pre-lab assignment aims to familiarize you with the sample geometry and analysis requirements as well as confirm your ability to measure strain using images using GOM correlate. This exercise will help you gain a better understanding of the practical aspects of materials testing.
Instructions:
Review the Lab Manual:
Begin by thoroughly reviewing the lab manual provided for the upcoming experiment. Pay special attention to the objectives, procedures, and any theoretical background related to stress and strain analysis. Understanding the context and purpose of the experiment is essential before proceeding. For this prelab, we will be working on data that has already been gathered by your TA. Sample Data Analysis:
Using the attached data, perform the following analysis. As a note, if you had difficulty gathering data for the tensile sample, you should pay close attention to the data from the next lab, as your DIC data will play a more important role in this lab due to the small geometry of the sample! a.
Preparation: Import the sample into GOM correlate and using the same techniques as last lab prepare the sample for analysis. b.
Using GOM correlate determines the lateral and axial strain for the sample. Remember for this sample we are only considering the smaller internal geometry! c.
Additionally, determine the shear angle for the elements in the concerned area! (Inspection->Check Dimension->Angles->Shear Angle)
Interpretation
: What information does this tell us about the behavior of this material? What can it not tell us. What is the benefit of this optical method versus the gauge-based system we used in our last lab?
What are the drawbacks of this method?
Questions
: In your one-page assignment, briefly answer the following questions:
a.
What did you learn from the sample data analysis? Were there any unexpected findings or patterns?
b.
How could you use this information along with a shear stress/strain data set to determine the Poisson’s ratio of the sample?
c. How do you think these concepts and skills will be useful in the upcoming lab?
Submission: Please submit your completed assignment, including the data table, along with your written
responses to the questions. This pre-lab assignment is due before the lab session, and it will serve as a foundation for our practical work in lab.
Discover more documents: Sign up today!
Unlock a world of knowledge! Explore tailored content for a richer learning experience. Here's what you'll get:
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Documents
Related Questions
In your summer internship, you are tasked with measuring the ultimate tensile strength of a material to determine if it meets your company’s (Superior Super Ships Inc) specification. Your boss is worried that the new low-cost supplier, Shoddy Alloys Inc, may not be reliable but it is the only way to source on-time the SS304 needed to make finishings for Jeff Bezos’ new yacht, the Black Pearl. You collect several load versus displacement curves, as illustrated below. The initial diameter of the round gauge section is 0.25 in.
You also collect the instantaneous diameter of the specimen during the test using a laser.
Using the provided data, calculate what is the ultimate tensile strength measured in this test?
arrow_forward
Can someone please help me to correctly solve all the following parts of this question. Thank you!
arrow_forward
Pls don’t use ai and fast :)
arrow_forward
Hi can you please help me with the attached question?
arrow_forward
You are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture
fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates
implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial
weight bearing activities.
Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to
verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into
solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending
test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the
yield stress for the Ti-6Al-4V…
arrow_forward
Learning Goal:
To use fundamental geometric and statics methods to determine the state of plane stress at the point on an element of material that is rotated clockwise through an angle from the in-
plane stress representation of the point.
The state of in-plane stress at a point on an element of material is shown. Let o,
the same point that is rotated through an angle of 0-35
45.0 ksi, o, 19.0 ksi, and Ty 12.0 kai. Use this information to represent the state of stress of
arrow_forward
Don’t use ai pls
arrow_forward
Which of these statements are correct?
arrow_forward
QUESTION
The following data were obtained during a tension test of a low carbon steel specimen
having a gauge length of 100 mm.
At the point where the stress strain curve deviated from linearity, the load was 35KN, the
gauge length was 102.5 mm and the diameter of the specimen was 1.6 mm. Before necking
began, loads of 45 KN and 55 KN produced gauge lengths of 103.4 mm and 107.7 mm
respectively.
Calculate
(a) The Modulus of elasticity
(b) The Strainhardening exponent
arrow_forward
answer all parts
arrow_forward
Match the following statements with the term that best describes each statement. (Enter Number ONLY)
1) Hooke's Law
2) Creep
3) Impact Strength
4) Proportional Limit
5) Fatigue
6) Elastic
The tendency of a solid material to move slowly or deform permanently under the influence of mechanical stresses below the yield
strength of the material.
The behavior of materials that deform when loaded but return to their original shape after the load is removed.
The linear relationship between stress and strain in the elastic region below the proportional limit.
The phenomenon where cracks propagate under loads less than the yield stress due to cyclic loading.
The material property determined using the Charpy or Izod test.
The point at which the stress vs strain becomes non-linear in an elastic material,
arrow_forward
For my assigment, I was asked to design a electric motorbike that has a peformance equal to Honda CBR1000 Fireblade which has a petrol engine. A part of the the assignment is to calculate " An estimate of maximum Power your new motor will need to generate to match the Honda’s performance." I can make the assumption, apart from changing the motor, everything else is going to stay the same so the fairing,the rider and etc they're gonna be the same for the two bikes. So can you please tell me how I can calculate that which information would I need ?
arrow_forward
This exercise requires showing the complete scanned strokes and procedures,
adding it to a pdf document with evidence of all the exercises and the honesty letter.
A Titanium specimen with a diameter of 0.8 [in] and 2.5 [in] in length is stretched in
uniaxial tension.
1. What is the maximum elongation (DI) of the material. If the deformation is
completely elastic?
2. What force is being applied
Consider the material properties S_UTS=1205 [MPa]; Sy= 1075 [MPa]; E= 100
[GPa]
in the following space write the values found as follows, do not forget the units
(-0.5 pts if 4d units do not appear):
]; F=
[];
arrow_forward
explain the strain here? include the minimum and the max .
arrow_forward
Consider the graph below for 3 test samples A, B and C of the same metal composition which have been cold-worked, but to different extents. If you had to
sort the samples by the degree of cold-working they have undergone, how would you rank them?
Stress (MPa)
600
500
400
300
200
100
05
0
Select one:
O a.
A
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- In your summer internship, you are tasked with measuring the ultimate tensile strength of a material to determine if it meets your company’s (Superior Super Ships Inc) specification. Your boss is worried that the new low-cost supplier, Shoddy Alloys Inc, may not be reliable but it is the only way to source on-time the SS304 needed to make finishings for Jeff Bezos’ new yacht, the Black Pearl. You collect several load versus displacement curves, as illustrated below. The initial diameter of the round gauge section is 0.25 in. You also collect the instantaneous diameter of the specimen during the test using a laser. Using the provided data, calculate what is the ultimate tensile strength measured in this test?arrow_forwardCan someone please help me to correctly solve all the following parts of this question. Thank you!arrow_forwardPls don’t use ai and fast :)arrow_forward
- Hi can you please help me with the attached question?arrow_forwardYou are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial weight bearing activities. Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the yield stress for the Ti-6Al-4V…arrow_forwardLearning Goal: To use fundamental geometric and statics methods to determine the state of plane stress at the point on an element of material that is rotated clockwise through an angle from the in- plane stress representation of the point. The state of in-plane stress at a point on an element of material is shown. Let o, the same point that is rotated through an angle of 0-35 45.0 ksi, o, 19.0 ksi, and Ty 12.0 kai. Use this information to represent the state of stress ofarrow_forward
- Don’t use ai plsarrow_forwardWhich of these statements are correct?arrow_forwardQUESTION The following data were obtained during a tension test of a low carbon steel specimen having a gauge length of 100 mm. At the point where the stress strain curve deviated from linearity, the load was 35KN, the gauge length was 102.5 mm and the diameter of the specimen was 1.6 mm. Before necking began, loads of 45 KN and 55 KN produced gauge lengths of 103.4 mm and 107.7 mm respectively. Calculate (a) The Modulus of elasticity (b) The Strainhardening exponentarrow_forward
- answer all partsarrow_forwardMatch the following statements with the term that best describes each statement. (Enter Number ONLY) 1) Hooke's Law 2) Creep 3) Impact Strength 4) Proportional Limit 5) Fatigue 6) Elastic The tendency of a solid material to move slowly or deform permanently under the influence of mechanical stresses below the yield strength of the material. The behavior of materials that deform when loaded but return to their original shape after the load is removed. The linear relationship between stress and strain in the elastic region below the proportional limit. The phenomenon where cracks propagate under loads less than the yield stress due to cyclic loading. The material property determined using the Charpy or Izod test. The point at which the stress vs strain becomes non-linear in an elastic material,arrow_forwardFor my assigment, I was asked to design a electric motorbike that has a peformance equal to Honda CBR1000 Fireblade which has a petrol engine. A part of the the assignment is to calculate " An estimate of maximum Power your new motor will need to generate to match the Honda’s performance." I can make the assumption, apart from changing the motor, everything else is going to stay the same so the fairing,the rider and etc they're gonna be the same for the two bikes. So can you please tell me how I can calculate that which information would I need ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY