Lab Report Lab 5 Projectile Motion
docx
keyboard_arrow_up
School
University of Mississippi *
*We aren’t endorsed by this school
Course
221
Subject
Mechanical Engineering
Date
Apr 3, 2024
Type
docx
Pages
4
Uploaded by SargentSeaLionPerson1084
Name: Gandy, Lillian
Partner: Parks, Webb
TA: Wang, Jack, Section: 3
Name of Experiment
Lab 5 -- Projectile Motion
Date Experiment was performed 2/26/24
Introduction (10 Points):
The objective of this experiment is to measure the parameters of a horizontally launched steel ball, to further our knowledge of projectile motion by predicting the landing point at an inclined angle. The basic principles of these experiments are kinematic equations, projectile motions, and standard deviation. The procedures of this experiment are to first make sure the degrees are at zero for the first part, fire the spring gun and place a piece of white paper under a taped piece of charcoal paper facing down in the observed area. Fire the gun once again and measure the distance and height from the gun. Record this data in your table and calculate for missing values.
Repeat this process six times collecting the distances and averaging them to find the average distance. Get the angle used for part two from the TA and angle the gun with these degrees. Find the predicted value of the distance using your data and mark where it should land. Fire the gun five more times after the initial time and record your data. Theoretical Analysis (15 Points):
See written for more.
Y
=
Y o
+
V ot
+
1
2
at
2
t
=
0
√
−
126
+
0
−
4.9
x
=
−
b±
√
b
2
−
4
ac
2
a
Data Plots/Charts (10 Points):
N/A
Results (10 points):
Inclined launch prediction (Xtheo)
Inclined launch prediction uncertainty
Inclined launch x measurement
X standard deviation
% difference between xtheo and x
Xtheo. = 2.26m
Δtheo. = 0.5m
Xincl = 2.261m
σx = 0.006m
% diff = 13.2%
1) Why is it necessary to do experimental trials with a horizontal spring gun before being able to make predictions about projections at inclined angles fired?
To ensure that the gun is firing at a constant precise rate and location, and to have a bases to plug
your values into an equation to find the projections with proven values, to then find predicted values.
2) Make a statement about whether your inclined launch prediction and your inclined launch measurement overlapped given their uncertainties.
My inclined launch predictions and measurements do overlap when the theoretical value of 2.58 is negative 0.5 uncertainty and the measured 2.26 value is positive 0.5 uncertainty.
Discussion of Results (30 Points):
Increasing the angle also increases the distance. These results meet the objective of the experiment by involving the measurements of a horizontally launched steel ball, furthering knowledge of projectile motion by predicting the landing point at an inclined angle, using kinematic equations, projectile motions, and standard deviation. Some sources of experimental error include incorrect measurement using the meter stick, not pushing the ball back at the same distance in the barrel, or not measuring the impression of the ball on the ground at the same point. One suggestion on a way to improve the experiment is to make sure everyone is measuring
the distance of the ball from the centermost position of the charcoal impression.
Post-Lab Questions (15 Points):
1) Discuss how your data and results would be affected if an aluminum ball were used instead of the steel ball. (Assume that the aluminum ball has half the mass of the steel ball that you actually
used. Ignore air-resistance.) The balls would both fall at the same acceleration because of gravity so their times would theoretically be the same. The aluminum would go a greater distance because it has a smaller mass than the steel ball.
2) What was the magnitude and direction of the steel ball’s acceleration at the instant that it became a projectile? Answer the same question about when the ball is at the vertical peak of its trajectory and when the ball is infinitesimally close to striking the ground. (Ignore air-resistance.)
The magnitude of the steel ball is 9.81 and the direction is downward from the instant it becomes
a projectile, and at the peak, to when it is about to strike the ground.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
3) If we were able to “improve” these spring-guns with much stiffer springs so that horizontally fired steel balls traveled in the 𝑥
-dimension 10 times farther than they currently do, by what factor would that increase or decrease the time-of-flight? (Ignore air-resistance.)
It would decrease the time of flight because the velocity would be faster therefore it would hit the ground faster based on the velocity-time equation.
Raw Data/Sample Calculations (10 Points):
Related Documents
Related Questions
Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY...
Scores
arrow_forward
Instrumentation & Measurements
This homework measures your capability to design/analyze various components/variables of ameasurement system based on what you have studied.
Question is Attached in image. Thank you.
arrow_forward
C
Dynamic Analysis and Aeroelasticity
SECTION B
Answer TWO questions from this section
ENG2012-N
The moment of inertia of a helicopter's rotor is 320kg. m². The rotor starts from rest
and at t = 0, the pilot begins by advancing the throttle so that the torque exerted on
the rotor by the engine (in N.m) is modelled by as a function of time (in seconds) by
T = 250t.
a) How long does it take the rotor to turn ten revolutions?
b) What is the rotor's angular velocity (in RPM) when it has turned ten
revolutions?
arrow_forward
Lab 2-Measurement Asynch - Tagged.pdf
Page 4 of 7
?
Part I: Taking Measurements & Estimating Uncertainties for a single measurement
www.stefanelli.eng.br
The mass of the object is_
0
i
Parts on a tripie peam palance
0
0
10 20 30
1
100
2 3
40
200
4
+/-
50 60 70
5
300
7
400
80
Qv Search
8
90
9
500
100
9
10 g
www.stefanelli.eng.br
arrow_forward
Areas Under the Standard Normal Curve-The Values Were Generated Using the Standard Normal
Distribution Function of Excel
Note that the standard normal curve is symmetrical about the mean.
z
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
1
0.95
0.96
0.97
0.98
0.99
1.01
1.02
1.03
1.04
1.05
Mean - 0
1.06
1.07
1.08
1.09
A
0.0000
0.0040
0.0080
0.0120
0.0160
0.0199
0.0239
0.0279
0.0319
0.0359
0.0398
0.0438
0.0478
A
0.3186
0.3212
0.3238
0.3264
0.3289
0.3315
0.3340
0.3365
0.3389
Z
0.3413
0.3438
0.3461
0.3485
0.3508
0.3531
0.3554
0.3577
0.3599
0.3621
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25
1.12
1.13
1.14
1.15
1.16
1.17
A
z
0.0517
0.0557
0.26
0.27
0.28
0.29
0.0596
0.0636
0.0675 0.3
0.0714 0.31
0.0753 0.32
0.0793 0.33
0.0832 0.34
0.0871 0.35
0.0910
0.0948
0.0987
1.18
1.19
1.2
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
A
0.3643
0.3665
0.3686
0.3708
0.3729
0.3749
0.3770
0.3790
0.3810
0.36
0.3830
0.3849
0.3869
0.3888
0.3907
0.3925
0.3944
0.3962
0.3980
0.3997
0.37…
arrow_forward
QUESTION 7
A model tow-tank test is conducted on a bare hull model at the model design
speed in calm water. Determine the effective horsepower (hp) for the ship,
including appendage and air resistances. The following parameters apply to the
ship and model:
Ship
1,100
Model
Length (ft)
Hull Wetted Surface Area (ft2)
Speed (knots)
30
250,000
15
Freshwater
Water
Seawater 50°F
70°F
Projected Transverse Area (ft²)
Cair
7,500
0.875
Appendage Resistance (% of bare hull)
10%
Hull Resistance (Ibf)
20
arrow_forward
As an engineer working for a water bottling company, you collect the following
data in order to test the performance of the bottling systems. Assume normal
distribution.
Milliliters of Water in the Bottle Frequency
485
490
milliliters
495
500
505
510
515
What is the mean (in milliliters)?
milliliters
What is the standard deviation (in milliliters)?
What is the z value corresponding to 490 milliliters?
Z =
6
12
20
33
18
11
00
8
arrow_forward
The Simple Pendulum
A
H
M
Sketch a graph to show the predicted relationship.
2²
H
Task 8 In your group, discuss how to derive an equation to relate the initial pendulum height H
to the bob's v 2 at its lowest point. Show the derivation of the equation. Then, again, use your
theoretical equation to calculate the expected (theoretical) slope. Use g = 9.79 ± 0.05 m/s2
expected change in the bob's kinetic energy and the expected change in the bob's potential
energy during this motion? released from rest and moving from a high position to its lowest
position
arrow_forward
Question 7
The following formulas are commonly used by engineers to predict the lift and drag of an airfoil:
where L and Dare the lift and drag forces, V is the airspeed, S is the wing span, is the air density, and CL and CD are the lift and drag coefficients. Both CL and CD depend on α , the angle of attack, the angle between the relative air velocity and the airfoil’s chord line.
Wind tunnel experiments for a particular airfoil have resulted in the following formulas.
where α is in degrees.
arrow_forward
The "spring-like effect" in a golf club could be determined by measuring the coeffi cient of restitution (the ratio of the outbound velocity to the
inbound velocity of a golf ball fired at the clubhead). Twelve randomly selected drivers produced by two clubmakers are tested and the
coefficient of restitution measured. The data follow:
Club 1: 0.8406, 0.8104, 0.8234, 0.8198, 0.8235, 0.8562, 0.8123, 0.7976, 0.8184, 0.8265, 0.7773, 0.7871
Club 2: 0.8305, 0.7905, 0.8352, 0.8380, 0.8145, 0.8465, 0.8244, 0.8014, 0.8309, 0.8405, 0.8256, 0.8476
Test the hypothesis that both brands of ball have equal mean overall distance. Use a = 0.05 and assume equal variances. Answer the following
questions regarding the t-test.
1. How many degrees-of-freedom are there in this problem (needed for finding the critical t-
values).
2. What is the absolute values of the critical t-value for this problem? We are using a two-
tailed t-test with a significance level of 5%. (use four significant figures)
3. What is…
arrow_forward
please show work
answer is D
arrow_forward
26. One of the joints of a certain industrial robot has a type L joint with a range of 1.3 m. The bit storage
capacity of the robot controller is 25 bits for this joint. The mechanical errors form a normally
distributed random variable about a given taught point. The mean of the distribution is zero and the
standard deviation is 0.08 mm in the direction of the output link of the joint. Determine the control
resolution (CR), accuracy, and repeatability for this robot joint.
arrow_forward
I need help please
arrow_forward
Record the dimensions of the known (calibration) block using the caliper and dial gauge on the table below. Indicate the
units of each measurement. Calculate the average length of each side of the block.
Dimension
Caliper (Units)
0.995
1.455
0.985
Ruler(in) A: 0.9
B: 1.5
C: 0.9
A
B
C
Dimension
A
B
Instrument
Use the average dimensions (see Problem 2a) of the known block to calibrate the LVDT at your workstation. Record the
voltage on the table below:
LVDT Offset: 0.556 (Do not include the offset value in your average dimensions)
C
Ave Dimension (Units)
(Dial Gauge)
0.997
1.659
0.949
0.964 in
1.538 in
0.945 in
oltage
Average Dimension
1.244 volt
1.994
1.28
0.964 in
1.538 in
0.945 in
arrow_forward
A thermocouple was used to measure the temperature. Over the range of temperatures expected in the experiment, a linear regression
analysis was performed for the temperature as a function of voltage. The best-fit equation was T = (-0.008563 + 220*V), where V is
the thermocouple voltage. The voltage was fed into a 11-bit A/D converter with a voltage range of -8 V to 8 V.
Determine the measurement resolution (in °C) due to the ADC?
O 0.851
None
O 3.113
1.710
0.393
4.960
1.144
O 3.797
arrow_forward
II
Question 2
A process instrument reading Z (volts) is thought to be related to a process stream flow rate V
(L/s) and pressure P (kPa) by the expression:
Z = aVÞp°.
Using the three data points shown in the table above, calculate the constants a, b and c and
indicate their units. In this particular case there is no regression to be performed, but only 3
equations in 3 unknowns to solve.
1
1.02
V (L/s)
P (kPa)
z (volts)
1.20
1.75
11.2
10.2
9.1
2.58
3.72
3.50
ere to search
12
arrow_forward
6. A ball is thrown straight up in the air at time t = 0. Its height y(t) is given by
y(t) = vot -
791²
(1)
Calculate:
(a) The time at which the ball hits the ground. First, make an estimate using a scaling
analysis (the inputs are g and vo and the output is the time of landing. Think about
their units and how you might construct the output using the inputs, just by matching
units). Solve the problem exactly. Verify that the scaling analysis gives you (almost)
the correct answer.
(b) The times at which the ball reaches the height v/(4g). Use the quadratic formula.
(c) The times at which the ball reaches the height v/(2g). You should find that both
solutions are identical. What does this indicate physically?
(d) The times at which the ball reaches the height v/g. What is the physical interpretation
of your solutions?
(e) Does your scaling analysis provide any insight into the answers for questions (a-e)?
Discuss. (Hint: Observe how your answers depend on g and vo).
arrow_forward
The subject is Engineering Data Analysis
p.s please answer my question. Please thank you so much
arrow_forward
Access Pearson
Course Home
Scores
arrow_forward
How do you determine which type of trendline to use on a graph?
The accepted or proposed experimental formula for the quantity
The type that passes through every single point
The best-fit parameter value (R^2)
a and c
arrow_forward
Analysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (ObsW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/ObsW, Mean (+-)1SD NW/ObsW) were created. Analyse ,Interpret the graphs and make a conclusion of the result attached.
arrow_forward
Answer the following questions, to test your understanding of sampling frequency and bit depth.
1. You are part of new automobile design team, and are responsible for designing the sensor data
collection system. The specification of the data collection system is that is must be capable of
receiving data with a resolution down to 0.1% of full scale (1 part in 1000) for any given sensor.
For example, suppose the driver pushes the gas pedal, the motion of which is read by an
electronic sensor such that the range of motion is defined from 0 (not pressed) to 1 (fully
pressed). If you want 0.1 % accuracy, you need 1000 possible data values between 0 and 1.
How many bits do you need to represent data to 0.1% accuracy?
Insert a picture of your work.
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... Scoresarrow_forwardInstrumentation & Measurements This homework measures your capability to design/analyze various components/variables of ameasurement system based on what you have studied. Question is Attached in image. Thank you.arrow_forwardC Dynamic Analysis and Aeroelasticity SECTION B Answer TWO questions from this section ENG2012-N The moment of inertia of a helicopter's rotor is 320kg. m². The rotor starts from rest and at t = 0, the pilot begins by advancing the throttle so that the torque exerted on the rotor by the engine (in N.m) is modelled by as a function of time (in seconds) by T = 250t. a) How long does it take the rotor to turn ten revolutions? b) What is the rotor's angular velocity (in RPM) when it has turned ten revolutions?arrow_forward
- Lab 2-Measurement Asynch - Tagged.pdf Page 4 of 7 ? Part I: Taking Measurements & Estimating Uncertainties for a single measurement www.stefanelli.eng.br The mass of the object is_ 0 i Parts on a tripie peam palance 0 0 10 20 30 1 100 2 3 40 200 4 +/- 50 60 70 5 300 7 400 80 Qv Search 8 90 9 500 100 9 10 g www.stefanelli.eng.brarrow_forwardAreas Under the Standard Normal Curve-The Values Were Generated Using the Standard Normal Distribution Function of Excel Note that the standard normal curve is symmetrical about the mean. z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 1 0.95 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04 1.05 Mean - 0 1.06 1.07 1.08 1.09 A 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.0398 0.0438 0.0478 A 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 Z 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 1.12 1.13 1.14 1.15 1.16 1.17 A z 0.0517 0.0557 0.26 0.27 0.28 0.29 0.0596 0.0636 0.0675 0.3 0.0714 0.31 0.0753 0.32 0.0793 0.33 0.0832 0.34 0.0871 0.35 0.0910 0.0948 0.0987 1.18 1.19 1.2 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 A 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.36 0.3830 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.37…arrow_forwardQUESTION 7 A model tow-tank test is conducted on a bare hull model at the model design speed in calm water. Determine the effective horsepower (hp) for the ship, including appendage and air resistances. The following parameters apply to the ship and model: Ship 1,100 Model Length (ft) Hull Wetted Surface Area (ft2) Speed (knots) 30 250,000 15 Freshwater Water Seawater 50°F 70°F Projected Transverse Area (ft²) Cair 7,500 0.875 Appendage Resistance (% of bare hull) 10% Hull Resistance (Ibf) 20arrow_forward
- As an engineer working for a water bottling company, you collect the following data in order to test the performance of the bottling systems. Assume normal distribution. Milliliters of Water in the Bottle Frequency 485 490 milliliters 495 500 505 510 515 What is the mean (in milliliters)? milliliters What is the standard deviation (in milliliters)? What is the z value corresponding to 490 milliliters? Z = 6 12 20 33 18 11 00 8arrow_forwardThe Simple Pendulum A H M Sketch a graph to show the predicted relationship. 2² H Task 8 In your group, discuss how to derive an equation to relate the initial pendulum height H to the bob's v 2 at its lowest point. Show the derivation of the equation. Then, again, use your theoretical equation to calculate the expected (theoretical) slope. Use g = 9.79 ± 0.05 m/s2 expected change in the bob's kinetic energy and the expected change in the bob's potential energy during this motion? released from rest and moving from a high position to its lowest positionarrow_forwardQuestion 7 The following formulas are commonly used by engineers to predict the lift and drag of an airfoil: where L and Dare the lift and drag forces, V is the airspeed, S is the wing span, is the air density, and CL and CD are the lift and drag coefficients. Both CL and CD depend on α , the angle of attack, the angle between the relative air velocity and the airfoil’s chord line. Wind tunnel experiments for a particular airfoil have resulted in the following formulas. where α is in degrees.arrow_forward
- The "spring-like effect" in a golf club could be determined by measuring the coeffi cient of restitution (the ratio of the outbound velocity to the inbound velocity of a golf ball fired at the clubhead). Twelve randomly selected drivers produced by two clubmakers are tested and the coefficient of restitution measured. The data follow: Club 1: 0.8406, 0.8104, 0.8234, 0.8198, 0.8235, 0.8562, 0.8123, 0.7976, 0.8184, 0.8265, 0.7773, 0.7871 Club 2: 0.8305, 0.7905, 0.8352, 0.8380, 0.8145, 0.8465, 0.8244, 0.8014, 0.8309, 0.8405, 0.8256, 0.8476 Test the hypothesis that both brands of ball have equal mean overall distance. Use a = 0.05 and assume equal variances. Answer the following questions regarding the t-test. 1. How many degrees-of-freedom are there in this problem (needed for finding the critical t- values). 2. What is the absolute values of the critical t-value for this problem? We are using a two- tailed t-test with a significance level of 5%. (use four significant figures) 3. What is…arrow_forwardplease show work answer is Darrow_forward26. One of the joints of a certain industrial robot has a type L joint with a range of 1.3 m. The bit storage capacity of the robot controller is 25 bits for this joint. The mechanical errors form a normally distributed random variable about a given taught point. The mean of the distribution is zero and the standard deviation is 0.08 mm in the direction of the output link of the joint. Determine the control resolution (CR), accuracy, and repeatability for this robot joint.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY