FINAL_LABS_BIOS251_Online_Labs_Week_1_Homeostasis_Lab__1 (3)
docx
keyboard_arrow_up
School
American Public University *
*We aren’t endorsed by this school
Course
251
Subject
Mechanical Engineering
Date
Feb 20, 2024
Type
docx
Pages
5
Uploaded by DukeIce6229
BIOS251 OL, Week 1 Lab
Name: Natasha Earls
OL Lab 1: Homeostatic Control: How does the human body keep itself in balance?
Learning Objectives:
List some of the main physiological variables under homeostatic control
Employ appropriate vocabulary to discuss the processes and concepts of homeostasis
Explain the steps in a homeostatic pathway from stimulus to response
Compare different types of feedback loops
Identify signs of homeostatic disruption and determine the underlying mechanism
Introduction:
The human body is a very complex combination of finely-tuned machinery. Every organ system is dependent on the other to carry out its physiological functions along with maintaining an internal equilibrium. Homeostasis is the ability of the body to maintain an
internal balance to in the body. So how does it always keep everything in balance? In this simulation, you will learn about the underlying regulatory workflow involved in the homeostatic process, through the examples of body temperature, blood pressure, and blood sugar regulation. Observe homeostasis in action
You will test different settings on our virtual volunteer, Phineas. You will observe and analyze how the body reacts to the various stimuli such as changes in temperature, heart rate, and blood glucose levels in the body. Using a 3D model of the human body, you will be able to apply one or more stimuli on the test subject, to observe an immediate visible impact on physiological variables. From your observations, you will identify the sensors detecting the stimuli, the control center processing them, and the effectors acting to counter them on Phineas’ body. Finally, you will interpret the resulting changes in those variables to explain the homeostatic phenomenon.
Part 1: Complete Labster Homeostatic Control
BIOS251 OL, Week 1 Lab
Name: Natasha Earls
Part 2: Report and Reflection
Purpose: Describe in your own words and in complete sentences, the purpose of this experiment.
The purpose of this experiment to see what kind of variables will change the body. This will help to understand how homeostasis works and what negative and positive feedback looks like in the human body. Observations: List 2 observations you have made in this simulation.
The first observation I have made is the change in tempature and exercising. If the air conditioner is turned off and the exercise has changed to extreme, the body will then pump blood faster and the body will begin to sweat. The second observation I have made is when the body is then subjected to rest and the air conditioner, the heart rate and sweating slow down. This cools the body and prevents it from overheating. Answer all the questions below:
1.
Why is it essential to have maintain homeostasis? (1 point)
It is essintaial to maintain homeostasis to so that the body does not have to work harder
to maintain the balance in the body. 2.
Provide an example of positive feedback mechanism and identify the stimuli, the central processing unit and the effectors involved in the pathway. (2 points)
An example of positive feedback mechanism happens during childbirth. The stimuli in this case is when the cervix is stretching to allow the baby to be born.
BIOS251 OL, Week 1 Lab
Name: Natasha Earls
The central processing unit is the hypothalamus which is responsible for triggering the pituitary gland to release oxytocin.
3.
In the simulation, what were the organs involved in homeostatic control? (2 points)
The organs involved in the homeostatic control were, the brain, pancreas, kidney,
skin and lungs. 4.
Using the figure below identify the abdominopelvic regions (5 points)
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
BIOS251 OL, Week 1 Lab
Name: Natasha Earls
Regions
A
Left Hypochondria Region
B
Epigastic Region
C
Right Hypochondriac Region
D
Left Lumbar Region
E
Umbilical Region
F
Right Lumbar Region
G
Left Inguinal Region
H
Hypogastric Region
I
Right Inguinal Region
BIOS251 OL, Week 1 Lab
Name: Natasha Earls
5.
Reflection: Reflect on at least 2 key concepts you have learned from this simulation. How would you relate it to the physiological functions of the body?
Two key concepts that I have learned from this simulation is negative and positive feedback. I would relate it to the physiological functions of the body by seeing what the body needs to do in order to maintain homeostasis. It would either need to reverse the negative feedback or it will go along with the positive feedback.
Grading Rubric:
Activity
Deliverable
Points
Part 1
Complete simulation
15
Part 2
Complete lab report and answer questions
Purpose (1 point)
Observation (2 points)
Questions (10 points)
Reflection (2 points)
15
Total
Complete all lab activities
30
Related Documents
Related Questions
please show work
answer is D
arrow_forward
Analysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (ObsW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/ObsW, Mean (+-)1SD NW/ObsW) were created. Analyse ,Interpret the graphs and make a conclusion of the result attached.
arrow_forward
Chapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY...
Scores
arrow_forward
Basic Manufacturing Process with 2 Job Types +
Inspection
Time between job arrivals at a machining station is exponentially distributed with mean 4.4 minutes.
There are 2 types of jobs to be processed 30% of which is Type 1 and, 70% are of Type 2. Processing
times are exponentially distributed. Mean processing time for Type 1 is 4.8 minutes, for Type 2 it is
2.5 minutes.
After the job is processed, they go through an inspection process with one single inspector and an
inspection time with triangular distribution (1,2,3.5). Inspector decides whether the part is good
enough, scrap or should be reworked. 80% of the parts produced is good, 10 % is scrap and the rest
needs rework.
Rework is done by the same manufacturing machine. The priority among the parts will be Part1 first,
part2 second and reworks of both type comes later. Rework time is normally distributed with mean 2
minutes and 0,2 std dev.
Simulate the system for one 8-hour day.
arrow_forward
A. A student establishes the time constant of a temperature sensor by first holding it immersed in hot water and then
suddenly removing it and holding it immersed in cold water. Several other students perform the same test with
similar sensors. Overall, their results are inconsistent, with estimated time constants differing by as much as a
factor of 1.2. Offer suggestions about why this might happen. Hint: Try this yourself and think about control of
test conditions.
B. Which would you expect to be better suited to measure a time-dependent temperature, a thermal sensor (e.g., a
thermocouple) having a small diameter spherical bead or one having a large diameter spherical bead? Why?
arrow_forward
The rapid progress of engineering design and information technology has caused difficulties in analyzing system reliability. Because of the increased complexity in system reliability structure (component/subsystem interfaces), many unexpected failure modes could occur, and their behaviors are interdependent. At a system’s design and development stage, the main challenge in analyzing a complex system is the failure uncertainty introduced by the incomplete knowledge of the system. This makes it hard to decompose system reliability into subsystem/component reliability in a deterministic manner, such as series or parallel systems. As a result, some common reliability analysis tools such as fault tree (FT) and reliability block diagram (RBD) become inadequate. Do you agree, why or why not? Are there any other approaches to system reliability assessment beside these tools at the early system’s design and development stage (what are these approaches)?
arrow_forward
Analysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (OW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/OW, Mean (+-)1SD NW/OW) were created. Analyse and Interpret the graphs attached.
arrow_forward
Subject: Mechanical Measurements
Do not copy other online answers
arrow_forward
As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…
arrow_forward
As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…
arrow_forward
What’s the the answer please
arrow_forward
Learning Goal:
To use the principle of linear impulse and momentum to relate a force on an object to the resulting velocity of the object at different times.
The equation of motion for a particle of mass m
can be written as
∑F=ma=mdvdt
By rearranging the terms and integrating, this equation becomes the principle of linear impulse and momentum:
∑∫t2t1Fdt=m∫v2v1dv=mv2−mv1
For problem-solving purposes, this principle is often rewritten as
mv1+∑∫t2t1Fdt=mv2
The integral ∫Fdt is called the linear impulse, I, and the vector mv is called the particle's linear momentum.
A tennis racket hits a tennis ball with a force of F=at−bt2, where a = 1300 N/ms , b = 300 N/ms2 , and t is the time (in milliseconds). The ball is in contact with the racket for 2.90 ms . If the tennis ball has a mass of 59.7 g , what is the resulting velocity of the ball, v, after the ball is hit by the racket?
arrow_forward
(b) A special sprinkler system is comprised of three identical humidity sensors,
a digital controller, and a pump, of which the reliability is 0.916, 0.965, and
0.983 respectively. The system configuration is shown in the figure below.
Sensor
Controller
Pump
Reliability block diagram of a sprinkler system.
(b) Calculate the reliability of the sprinkler system.
(c) Discuss the importance of safety in an engineering maintenance.
arrow_forward
University of Babylon
Collage of Engineering\Al-Musayab
Department of Automobile
Engineering
Under Grad/Third stage
Notes:
1-Attempt Four Questions.
2- Q4 Must be Answered
3-Assume any missing data.
4 تسلم الأسئلة بعد الامتحان مع الدفتر
Subject: Mechanical
Element Design I
Date: 2022\01\25
2022-2023
Time: Three Hours
Course 1
Attempt 1
Q1/ Design a thin cylindrical pressure tank (pressure vessel) with hemispherical ends to the
automotive industry, shown in figure I below. Design for an infinite life by finding the
appropriate thickness of the vessel to carry a sinusoidal pressure varied from {(-0.1) to (6) Mpa}.
The vessel is made from Stainless Steel Alloy-Type 316 sheet annealed. The operating
temperature is 80 C° and the dimeter of the cylinder is 36 cm. use a safety factor of 1.8.
Fig. 1
(15 Marks)
Q2/ Answer the following:
1- Derive the design equation for the direct evaluation of the diameter of a shaft to a desired
fatigue safety factor, if the shaft subjected to both fluctuated…
arrow_forward
I asked bartleby to solve this question earlier, it gave me AI answer which is completely different to what's shown in this answer. I don't know which one is correct now. I have attached screenshots of the AI answer. Can you clarify which is correct. Also I previously asked about pv diagram and you said ' the curve in the explanation is correct', did you mean in your explanation or the one I showed as an example? Please advice
arrow_forward
Vibrations
arrow_forward
2) A device used in a ground radar system has age to failure that is described approximately by a
Weibull distribution with mean life 83 h, shape parameter 1.5, and location parameter zero.
When it fails it takes on average 3.5 h to repair:
a) Calculate the reliability over a 25 h period, and the 'steady state' availability of the device.
b) Calculate the reliability over 25 h, and the ‘steady state' availability of a subsystem that
consists of two of these devices in active parallel redundancy.
arrow_forward
You’re testing a system that involves a fan, water pump, and compressor. The components are turned ON in sequence and sensor readings are taken, as per a written protocol that you’re following. The system is running as expected after the fan and water pump are turned ON. However, when you turn ON the compressor, it runs for about thirty seconds then stops, consistently.
Swapping out the compressor for a different one seems to solve the problem. What could have been the issue with the bad compressor?
arrow_forward
8. Why do experiments have a control group as part of the design?
to see if the treatment (changing the independent variable) has any effect
to use as a backup, In case the experiment fails the first time
O to help the scientists determine which varlable is the dependent variable
to minimize the number of varlables in the experiment
arrow_forward
Can someone please help me to answer all of the following questions thank you!!
arrow_forward
After creating a decision matrix for two types of materials used to design a safety belt, an engineer assigns a weight of 4 to nylon for thickness and a weight of 5 to polyester for thickness. The engineer also assigns a weight of 4 to nylon for strength and a weight of 3 to polyester for strength. Polyester is more expensive than nylon. Describe which material would be preferable to use for the safety belt, if cost is prioritized as a criterion
arrow_forward
Pressurized eyes Our eyes need a certain amount of internal pressure in order to work properly, with the normal range being between 10 and 20 mm of mercury. The pressure is determined by a balance between the fluid entering and leaving the eye. If the pressure is above the normal level, damage may occur to the optic nerve where it leaves the eye, leading to a loss of the visual field termed glaucoma. Measurement of the pressure within the eye can be done by several different noninvasive types of instruments, all of which measure the slight deformation of the eyeball when a force is put on it. Some methods use a physical probe that makes contact with the front of the eye, applies a known force, and measures the deformation. One non-contact method uses a calibrated “puff” of air that is blown against the eye. The stagnation pressure resulting from the air blowing against the eyeball causes a slight deformation, the magnitude of which is correlated with the pressure within the eyeball.…
arrow_forward
Q1 please
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- please show work answer is Darrow_forwardAnalysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (ObsW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/ObsW, Mean (+-)1SD NW/ObsW) were created. Analyse ,Interpret the graphs and make a conclusion of the result attached.arrow_forwardChapter 12 - Lecture Notes.pptx: (MAE 272-01) (SP25) DY... Scoresarrow_forward
- Basic Manufacturing Process with 2 Job Types + Inspection Time between job arrivals at a machining station is exponentially distributed with mean 4.4 minutes. There are 2 types of jobs to be processed 30% of which is Type 1 and, 70% are of Type 2. Processing times are exponentially distributed. Mean processing time for Type 1 is 4.8 minutes, for Type 2 it is 2.5 minutes. After the job is processed, they go through an inspection process with one single inspector and an inspection time with triangular distribution (1,2,3.5). Inspector decides whether the part is good enough, scrap or should be reworked. 80% of the parts produced is good, 10 % is scrap and the rest needs rework. Rework is done by the same manufacturing machine. The priority among the parts will be Part1 first, part2 second and reworks of both type comes later. Rework time is normally distributed with mean 2 minutes and 0,2 std dev. Simulate the system for one 8-hour day.arrow_forwardA. A student establishes the time constant of a temperature sensor by first holding it immersed in hot water and then suddenly removing it and holding it immersed in cold water. Several other students perform the same test with similar sensors. Overall, their results are inconsistent, with estimated time constants differing by as much as a factor of 1.2. Offer suggestions about why this might happen. Hint: Try this yourself and think about control of test conditions. B. Which would you expect to be better suited to measure a time-dependent temperature, a thermal sensor (e.g., a thermocouple) having a small diameter spherical bead or one having a large diameter spherical bead? Why?arrow_forwardThe rapid progress of engineering design and information technology has caused difficulties in analyzing system reliability. Because of the increased complexity in system reliability structure (component/subsystem interfaces), many unexpected failure modes could occur, and their behaviors are interdependent. At a system’s design and development stage, the main challenge in analyzing a complex system is the failure uncertainty introduced by the incomplete knowledge of the system. This makes it hard to decompose system reliability into subsystem/component reliability in a deterministic manner, such as series or parallel systems. As a result, some common reliability analysis tools such as fault tree (FT) and reliability block diagram (RBD) become inadequate. Do you agree, why or why not? Are there any other approaches to system reliability assessment beside these tools at the early system’s design and development stage (what are these approaches)?arrow_forward
- Analysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (OW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/OW, Mean (+-)1SD NW/OW) were created. Analyse and Interpret the graphs attached.arrow_forwardSubject: Mechanical Measurements Do not copy other online answersarrow_forwardAs an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…arrow_forward
- As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…arrow_forwardWhat’s the the answer pleasearrow_forwardLearning Goal: To use the principle of linear impulse and momentum to relate a force on an object to the resulting velocity of the object at different times. The equation of motion for a particle of mass m can be written as ∑F=ma=mdvdt By rearranging the terms and integrating, this equation becomes the principle of linear impulse and momentum: ∑∫t2t1Fdt=m∫v2v1dv=mv2−mv1 For problem-solving purposes, this principle is often rewritten as mv1+∑∫t2t1Fdt=mv2 The integral ∫Fdt is called the linear impulse, I, and the vector mv is called the particle's linear momentum. A tennis racket hits a tennis ball with a force of F=at−bt2, where a = 1300 N/ms , b = 300 N/ms2 , and t is the time (in milliseconds). The ball is in contact with the racket for 2.90 ms . If the tennis ball has a mass of 59.7 g , what is the resulting velocity of the ball, v, after the ball is hit by the racket?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY