Studio 2 Mechanical Dissection of a Circuit Breaker
pdf
keyboard_arrow_up
School
Georgia Institute Of Technology *
*We aren’t endorsed by this school
Course
2110
Subject
Mechanical Engineering
Date
Feb 20, 2024
Type
Pages
4
Uploaded by ChefRoseWombat20
1
GEORGIA INSTITUTE OF TECHNOLOGY
George W. Woodruff School of Mechanical Engineering ME 2110 - Creative Decisions and Design, Fall 2023 Studio #2 – Mechanical Dissection
A circuit breaker
is a mechanism that protects an electrical circuit from damage caused by overcurrent/overload or short circuit. Its basic function is to interrupt current flow after protective relays detect a fault. This week you will work in groups of three to four students to dissect a circuit breaker and determine how it operates. You also need to look at the circuit breaker in terms of design for assembly and manufacture. Your team will be provided with a 15-amp circuit breaker, tools, a roll of tape, and a plate. The task consists of disassembling the circuit breaker, sketching each component, determining how the circuit breaker operates, and reassembling it so that it works. Before taking the internal system apart, be sure to take plenty of pictures
! They will help with reassembly. Using the Guide to Circuit Breaker Disassembly & Assembly
, carefully take the circuit breaker apart. Do this over the plate, as there are many small parts and springs that could pop out. Keep track of each part and note where it came from. Consider using a numbering system. You might wish to place each part on a piece of tape, measure and label it. YouTube may be helpful in explaining the various features (e.g., https://www.youtube.com/shorts/RLfhz4QiOS4). After taking the circuit breaker apart, draw and label the components for use in creating assembly drawings. Determine how the circuit breaker operates, i.e., how excess current opens the circuit breaker. You will need to explain this in words with appropriate sketches. Determine how you would redesign the circuit breaker to make it easier to manufacture and assemble. Part reduction and simplification are keys to this. Reassemble the circuit breaker and make sure that it works. You will have to demonstrate this to the instructors when you are asked to turn in the materials. Deliverables: Your team will be responsible for the following deliverables. 1.
Report (85%)
This is a team assignment. You and your team members must collectively produce a report formatted as a PDF-file that is to be uploaded in Canvas before the start of the week 5 Studio. The report is to include a cover page followed by a maximum of 3 pages
of text using 12-point font, 1-inch margins, and 1.5-line spacing. An appendix that does not contribute toward the page limit can be added to incorporate figures and tables. Use page numbers at the bottom of each page. (Page 1 begins with the report body, which usually begins with an introduction.) The submission should include the following: Cover Page: See the attached example. The cover page is to include the title of the assignment, section information (e.g., name/number), instructor name, TA name, and team member names. It
2
is to be on its own separate page, which does not count toward the page limit. Abstract: This is a one-paragraph summary of what the reader should expect to learn if the report body is read. It should summarize the objective of your work, your approach, and an explanation as to how the objective was met with results (or why the objective was not met). The Abstract should be on its own separate page. It does not count toward the page limit. Report body: This is a written technical document that conveys information in an objective and fact-based manner, consisting of three key features: process, progress, and results. Write in the third-person, and consider presenting content in the following progression for clarity:
Introduction: Restate the objective of the study. Include any engineering challenges associated with achieving this objective.
Design: Using the design tools discussed in lecture, give an overview of the customer needs, performance specifications, and functions for this type of product. Review the design of the product in terms of user interaction. Discuss potential risks to the user.
Analysis: Explain how the product works. Create a set of assembly instructions such that with the right materials, the circuit breaker could be recreated without the original assembly present. Provide tables and labeled figures that support your discussion, utilizing the same labels in the text. Consider offering effective visualizations using exploded views, section views, and hiding/isolating components.
Conclusions: Summarize your report with any recommendations on how to make the circuit breaker easier to manufacture and or assemble. If the objective of the study was achieved, explain how. If not, explain why. Appendix: Figures and tables should NOT be included in the report body; rather, they should be placed in an Appendix. Each figure is to be presented in such a way as to match the sequential order of its respective citation within the report body. Figure captions go below the figure
. Tables are to be similarly cited, but with their captions placed above the table
. All fonts in the figures and tables must be easily visible. All figures and tables must be cited
in the report body. Contributions statement: See attached example. Your team should include a brief statement for each member indicating the respective contributions made to the report, including the writing, drawing, editing, and reviewing of content and illustrations. The statement is to be on its own separate page. It does not count toward the page limit. 2.
Presentation (15%)
In Studio Week 5, your team is to deliver a PowerPoint presentation summarizing your report. The presentation is limited to a maximum of 10 minutes
. It should include an agenda, a discussion of what was observed in dissecting the circuit breaker, a summary on how it is assembled (include part listings and assembly drawings), and recommendations for product improvement. A copy of the presentation should be submitted in PDF form to Canvas before the start of the Studio. One person on your team will give this presentation. 3.
Peer Evaluation.
You will be evaluating the performance of your peers and yourself on the project team. A sample peer evaluation form is provided on the ME2110 Canvas website. The peer evaluation should be submitted in PDF form through Canvas before the deadline.
3
**EXAMPLE COVER PAGE** ME2110 – Section A01 Studio #2 Report Team 1: Team Member 1 Team Member 2 Team Member 3 Team Member 4 Submitted to: Instructor Name TA: TA Name Date: ######
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
4
**EXAMPLE CONTRIBUTIONS STATEMENT** Contributions Statement 1. Student 1 – Contributed toward writing the assembly instructions and the Abstract and Introduction sections, as well as final editing of the report. 2. Student 2 – Contributed toward review of the assembly instructions and writing the report discussion. 3. Student 3 – Contributed toward figure preparation and writing the assembly instructions. 4. Student 4 – Contributed toward generation of figures and tables, as well as writing the report discussion.
Related Documents
Related Questions
Question 2
You are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture
fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates
implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial
weight bearing activities.
Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to
verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into
solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending
test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the
yield stress for the…
arrow_forward
Please solve, engineering econ
arrow_forward
Help!!! Please answer all Correctly!!! Please
arrow_forward
You are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture
fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates
implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial
weight bearing activities.
Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to
verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into
solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending
test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the
yield stress for the Ti-6Al-4V…
arrow_forward
Case Study – The New Engineer
Jeff was just hired by GSI, Inc. to be their Environmental and Safety Coordinator. This is Jeff's first position after completing his engineering degree. He had taken a course in safety engineering as part of his studies and felt confident that he could handle the job.
Management at GSI, Inc. has assured him that they are committed to maintaining a safe workplace. They have never had an individual dedicated to this task full-time. They will implement his recommendations if he can justify them.
As Jeff begins to get familiar with the operations, he spends considerable time on the production floor. He notices workers clean their tools before break with a liquid from an unmarked 55-gallon drum. They also use this liquid to clean residue from their skin. They use paper towels to dry their tools and hands, throw these towels in the trash, and head to the break room for a snack and/or smoke.
In talking with the workers, Jeff learns of some of…
arrow_forward
Case Study – The New Engineer
Jeff was just hired by GSI, Inc. to be their Environmental and Safety Coordinator. This is Jeff's first position after completing his engineering degree. He had taken a course in safety engineering as part of his studies and felt confident that he could handle the job.
Management at GSI, Inc. has assured him that they are committed to maintaining a safe workplace. They have never had an individual dedicated to this task full-time. They will implement his recommendations if he can justify them.
As Jeff begins to get familiar with the operations, he spends considerable time on the production floor. He notices workers clean their tools before break with a liquid from an unmarked 55-gallon drum. They also use this liquid to clean residue from their skin. They use paper towels to dry their tools and hands, throw these towels in the trash, and head to the break room for a snack and/or smoke.
In talking with the workers, Jeff learns of some of…
arrow_forward
I want to briefly summarize what he is talking about and what you conclude.
pls very urgent
arrow_forward
The University of Oklahoma School of Civil Engineering and Environmental Science
spring 2024 Semester
Problem 3 (30 pts.)
ENGR 2411 Applied Engineering Statics
Prerequisite Quiz
Page 4 of a
Your friend Dave loves hanging on the OU banner poles attached to the light poles on campus,
this is despite your strong disapproval of their behavior. As an engineering student you are super
concerned about the moment acting at the base of the light pole. What if Dave breaks the light
pole! Calculate the moment acting about the base of the light pole (point O) when Dave is angled
45° from the horizontal banner pole. Dave weighs 120 lbs. Assume the force exerted by Dave on
the banner pole is aligned with their arm that is holding onto the pole (ie. at 45°).
B 15ft
tf8
Disclaimer: Dave is fictional and does
not represent any actual person.
arrow_forward
I need help with this before tomorrow’s exam if I can get all needed calculations please
arrow_forward
I need problems 6 and 7 solved.
I got it solved on 2 different occasions and it is not worded correctly.
NOTE: Problem 1 is an example of how it should be answered. Below are 2 seperate links to same question asked and once again it was not answered correctly. 1. https://www.bartleby.com/questions-and-answers/it-vivch-print-reading-for-industry-228-class-date-name-review-activity-112-for-each-local-note-or-c/cadc3f7b-2c2f-4471-842b-5a84bf505857
2. https://www.bartleby.com/questions-and-answers/it-vivch-print-reading-for-industry-228-class-date-name-review-activity-112-for-each-local-note-or-c/bd5390f0-3eb6-41ff-81e2-8675809dfab1
arrow_forward
Please do not copy other's work and do not use ChatGPT or Gpt4,i will be very very very appreciate!!!
Thanks a lot!!!!!
arrow_forward
Table 1: Mechanical behavior of human cadaver tibial bones
during pure torsional loads applied with the proximal tibia
fixed and the torque applied to the distal tibia until there is
bone fracture.
Medial condyle
Tibial tuberosity-
Medial malleolus
-Lateral condyle
Head of fibula
Ti-6Al-4V grade 5
Stainless Steel 316L
Region of bone
resection
-Lateral malleolus
L = 365 mm
Annealed
Annealed
Torque at ultimate failure (bone fracture)
Displacement (twist angle) at ultimate failure
Torsional Stiffness
Table 2: Mechanical properties of candidate materials for the rod.
Material
Process
Yield Strength
(MPa)
880
220-270
Do = 23 mm
Elastic
Modulus (GPa)
115
190
d₁ = 14 mm
Figure 1: Representative tibia bone showing the resection region (blue arrows) and median length (L). A circular cross section of distal tibia
taken at the level of resection) showing the median inner (di) and outer (Do) diameters of the cortical bone. A tibia bone after resection with the
proposed metal solid rod (black line)…
arrow_forward
How may acoustic designers alter the design of a room, which was previously used for music performances, into a room now to be used for spoken word performances? Use annotated diagrams for your response
arrow_forward
Part 1: Suppose that our company performs DNA analysis for a law enforcement agency. We currently have 1 machine that are essential to performing the analysis. When an analysis is performed, the machine is in use for half of the day. Thus, each machine of this type can perform at most two DNA analyses per day. Based on past experience, the distribution of analyses needing to be performed on any given day are as follows: (Fill in the table)
Part2: We are considering purchasing a second machine. For each analysis that the machine is in use, we profit 1400$. What is the YEARLY expected value of this new machine ( ASSUME 365 days per year - no weekends or holidays
arrow_forward
Cathy Gwynn for a class project is analyzing a "Quick Shop" grocery store. The store emphasizes quick service, a limited assortment of grocery items, and higher prices. Cathy wants to see if the store hours (currently 0600 to 0100) can be changed to make the store more profitable.
Time Period
Daily Sales in the Time Period
0600-0700
$40
0700-0800
70
0800-0900
120
0900-1200
400
1200-1500
450
1500-1800
500
1800-2000
600
2000-2200
200
2200-2300
50
2300-2400
85
2400-0100
40
The cost ofthe groceries sold averages 65% of sales. The incremental cost to keep the store open, including the clerk's wage and other operating costs, is S23 per hour. To maximize profit, when should the store be opened, and when should it be closed?
arrow_forward
dear tutor please provide neat and clean and detailed answer.
dont copy from google
adress both questions well
arrow_forward
Question 3
You are working on a design team at a small orthopaedic firm. Your team is starting to work on a lower limb
(foot-ankle) prosthesis for individuals who have undergone foot amputation (bone resection at the distal tibia). You remember hearing
about "osseointegration" in an exciting orthopaedic engineering class you attended at Clemson, so you plan to attach the foot
prosthesis using a solid metal rod inserted into the distal tibia. You think stainless steel or titanium alloy might be a useful rod material.
You decide to begin this problem by identifying typical tibial bone anatomy and mechanical behavior (as provided in the tables and
image below). You assume the tibial bone can be modeled as a hollow cylinder of cortical bone, as represented in the image. You
anticipate the length of the rod will be 1/2 the length of the tibia.
Q3G: Critical Thinking: What would you propose to your team as the next step in this analysis? Is it reasonable to assume the rod
will experience the…
arrow_forward
Hello tutors, help me. Just answer "Let Us Try"
arrow_forward
As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…
arrow_forward
As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…
arrow_forward
I need parts 1, 2, and 3 answered pertaining to the print provided.
NOTE: If you refuse to answers all 3 parts and insist on wasting my question, then just leave it for someone else to answer. I've never had an issue until recently one single tutor just refuses to even read the instructions of the question and just denies it for a false reasons or drags on 1 part into multiple parts for no reason.
arrow_forward
pls help me my head hurts
arrow_forward
The following is a series of questions pertaining to the NSPE Code of Ethics. Please indicate whether the statements are true or false. These questions are provided by the NSPE.
Note: This ethics test is intended solely to test individual knowledge of the specific language contained in the NSPE Code of Ethics and is not intended to measure individual knowledge of engineering ethics or the ethics of individual engineers or engineering students.
Engineers may issue subjective and partial statements if such statements are in writing and consistent with the best interests of their employer, client or the public.
arrow_forward
Task 1
You are employed as a mechanical engineer within an unnamed research center, specializing in the
development of innovative air conditioning systems. Your division is tasked with providing computer-based
modeling and design solutions using computational fluid dynamics through ANSYS software. Your primary
responsibilities involve the analysis of horizontal channel dynamics to meet specific criteria. Under the
guidance of your immediate supervisor, you have been assigned unique responsibilities within an ongoing
project. As a member of the research team, your role includes constructing an appropriate model and
executing a sequence of simulation iterations to explore and enhance channel performance. Figure 1
provides a visualization of the horizontal channel under consideration. Consider 2D, incompressible, steady
flow in a horizontal channel at a Reynolds number of 150. The schematic below illustrates the channel flow,
not drawn to scale. For simplicity, neglect gravity. The…
arrow_forward
Please answer the 4th question
arrow_forward
You are an engineer in a company that manufactures and designs several mechanical devices, and your manager asked you to help your customers. In this time, you have two customers, one of them wants to ask about internal combustion engines while the other requires a heat exchanger with particular specifications. Follow the parts in the following tasks to do your job and support your customers.Task 1:Your first customer asked for an internal combustion engine to use it in a designed car. Your role is to describe the operation sequence of different types of available engines, explain their mechanical efficiency, and deliver a detailed technical report which includes the following steps:STEP 1Describe with the aid of diagrams the operational sequence of four stroke spark ignition and four stroke compression ignition engines.STEP 2Explain and compare the mechanical efficiency of two and four-stroke engines.STEP 3Review the efficiency of ideal heat engines operating on the Otto and Diesel…
arrow_forward
Help!!! Please answer part b correctly like part A. Please!!!!
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Related Questions
- Question 2 You are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial weight bearing activities. Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the yield stress for the…arrow_forwardPlease solve, engineering econarrow_forwardHelp!!! Please answer all Correctly!!! Pleasearrow_forward
- You are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial weight bearing activities. Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the yield stress for the Ti-6Al-4V…arrow_forwardCase Study – The New Engineer Jeff was just hired by GSI, Inc. to be their Environmental and Safety Coordinator. This is Jeff's first position after completing his engineering degree. He had taken a course in safety engineering as part of his studies and felt confident that he could handle the job. Management at GSI, Inc. has assured him that they are committed to maintaining a safe workplace. They have never had an individual dedicated to this task full-time. They will implement his recommendations if he can justify them. As Jeff begins to get familiar with the operations, he spends considerable time on the production floor. He notices workers clean their tools before break with a liquid from an unmarked 55-gallon drum. They also use this liquid to clean residue from their skin. They use paper towels to dry their tools and hands, throw these towels in the trash, and head to the break room for a snack and/or smoke. In talking with the workers, Jeff learns of some of…arrow_forwardCase Study – The New Engineer Jeff was just hired by GSI, Inc. to be their Environmental and Safety Coordinator. This is Jeff's first position after completing his engineering degree. He had taken a course in safety engineering as part of his studies and felt confident that he could handle the job. Management at GSI, Inc. has assured him that they are committed to maintaining a safe workplace. They have never had an individual dedicated to this task full-time. They will implement his recommendations if he can justify them. As Jeff begins to get familiar with the operations, he spends considerable time on the production floor. He notices workers clean their tools before break with a liquid from an unmarked 55-gallon drum. They also use this liquid to clean residue from their skin. They use paper towels to dry their tools and hands, throw these towels in the trash, and head to the break room for a snack and/or smoke. In talking with the workers, Jeff learns of some of…arrow_forward
- I want to briefly summarize what he is talking about and what you conclude. pls very urgentarrow_forwardThe University of Oklahoma School of Civil Engineering and Environmental Science spring 2024 Semester Problem 3 (30 pts.) ENGR 2411 Applied Engineering Statics Prerequisite Quiz Page 4 of a Your friend Dave loves hanging on the OU banner poles attached to the light poles on campus, this is despite your strong disapproval of their behavior. As an engineering student you are super concerned about the moment acting at the base of the light pole. What if Dave breaks the light pole! Calculate the moment acting about the base of the light pole (point O) when Dave is angled 45° from the horizontal banner pole. Dave weighs 120 lbs. Assume the force exerted by Dave on the banner pole is aligned with their arm that is holding onto the pole (ie. at 45°). B 15ft tf8 Disclaimer: Dave is fictional and does not represent any actual person.arrow_forwardI need help with this before tomorrow’s exam if I can get all needed calculations pleasearrow_forward
- I need problems 6 and 7 solved. I got it solved on 2 different occasions and it is not worded correctly. NOTE: Problem 1 is an example of how it should be answered. Below are 2 seperate links to same question asked and once again it was not answered correctly. 1. https://www.bartleby.com/questions-and-answers/it-vivch-print-reading-for-industry-228-class-date-name-review-activity-112-for-each-local-note-or-c/cadc3f7b-2c2f-4471-842b-5a84bf505857 2. https://www.bartleby.com/questions-and-answers/it-vivch-print-reading-for-industry-228-class-date-name-review-activity-112-for-each-local-note-or-c/bd5390f0-3eb6-41ff-81e2-8675809dfab1arrow_forwardPlease do not copy other's work and do not use ChatGPT or Gpt4,i will be very very very appreciate!!! Thanks a lot!!!!!arrow_forwardTable 1: Mechanical behavior of human cadaver tibial bones during pure torsional loads applied with the proximal tibia fixed and the torque applied to the distal tibia until there is bone fracture. Medial condyle Tibial tuberosity- Medial malleolus -Lateral condyle Head of fibula Ti-6Al-4V grade 5 Stainless Steel 316L Region of bone resection -Lateral malleolus L = 365 mm Annealed Annealed Torque at ultimate failure (bone fracture) Displacement (twist angle) at ultimate failure Torsional Stiffness Table 2: Mechanical properties of candidate materials for the rod. Material Process Yield Strength (MPa) 880 220-270 Do = 23 mm Elastic Modulus (GPa) 115 190 d₁ = 14 mm Figure 1: Representative tibia bone showing the resection region (blue arrows) and median length (L). A circular cross section of distal tibia taken at the level of resection) showing the median inner (di) and outer (Do) diameters of the cortical bone. A tibia bone after resection with the proposed metal solid rod (black line)…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning