AdvancedPlottingAssignment_RebeccaArevalo
pdf
keyboard_arrow_up
School
Liberty University *
*We aren’t endorsed by this school
Course
133
Subject
Mathematics
Date
Apr 3, 2024
Type
Pages
9
Uploaded by AmbassadorGoldfinchMaster1211
Advanced Plotting Assignment Becca Arevalo 10/1/2023
Problem 5.4
Do a breakeven analysis for certain chemical product.
Fixed cost: $2.045 million per year Variable cost: -Material cost: 62 cents per gallon of product -Energy cost: 24 cents per gallon of product -Labor cost: 16 cents per gallon of product let P be selling price in dollars per gallon. Selling price and sales quantitiy Q is Q=6x10^6-1.110^6P
Using the data...
-plot the fixed & total variable cost vs. Q
-graphically determine the breakeven point (with labels)
-Find the range of Q where production is profitable
-Find the value for the maximum profit of Q
Initialize Variables clc, clear, close all
FC=2.045e6; %fixed cost in dollars per year MC=.62;
EC=.24;
LC=.16;
Q=0:1:6e6; %quantity produced/sold in millions of gallons per year
Perform calculations VC=MC+EC+LC; %variable cost in dollars per gallon producedTC=FC+Q.*VC; %return total cost per year in millions $
P=(6e6-Q)./(1.1e6);
%selling price in dollars per gallon sold
TR=Q.*P; %returns total revenue per year in millions
TC=FC+Q.*VC;
TP=TR-TC; %return profit per year in millions Evaluate Results idx=find(TP>0); %finding all possible indexes where TP is positive
min_idx=min(idx); %finding the frist index where TP is positive max_idx=max(idx); %finding second index where TP is positive minBEP=Q(min_idx); %first breakeven point in millions of gallons per year maxBEP=Q(max_idx); %second breakeven point in millions of gallons per year 1
max_TR=max(TR); Display results plot(Q,TC,Q,TR,
'--'
)
title(
'Chemical Product Economic Model'
)
xlabel(
'Quantity Produced/Sold,gallons'
)
ylabel(
'Total Revenue/Cost dollars'
)
legend(
'Total cost'
,
'Totoal revenue'
,
'location'
,
'Northwest'
) grid on
hold on plot(minBEP,TR(minBEP),
'k*'
),text(minBEP,TR(minBEP),
'minBEP'
)
hold on
plot(maxBEP,TR(maxBEP),
'k*'
),text(maxBEP,TR(maxBEP),
'maxBEP'
) fprintf(
'The first breakeven point occurs at %3.0f million gallons and the second breakeven point occurs at %3.0f. Production is only profitable between these two points. '
,minBEP,maxBEP)
The first breakeven point occurs at 515665 million gallons and the second breakeven point occurs at 4362335. Product
fprintf(
'The maximum profit possible is %3.0f'
,max_TR)
The maximum profit possible is 8181818
Problem 5.17 2
Initialize variables clc, clear, close all
t=linspace(0,2*pi,1000);
sin_t=(10^-0.5.*t).*sin(3.*t+2);
cos_t=(7^-0.4.*t).*cos(5.*t-3);
plot functions/display results plot(t,sin_t,t,cos_t,
'--'
), title(
'x(t) and y(t)'
), grid on xlabel(
'Angle in radians'
),ylabel(
'cos and sin'
), legend(
'sin(t)'
,
'cos(t)'
)
Problem 5.25
The Volume and Area of a sphere are V=(4/3)pi*r^3 A=4*pi*r^2
Plot:
-V&A vs r 0.1<=r<=100m
-V&r vs A 1<=A<=10e4 m^2
clc, clear, close all
r=.01:.1:10e4;
3
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
V=(4/3)*pi*r.^3;
A=4*pi*r.^2;
Plot and Display results subplot(2,2,1)
plot(V,r), title(
'V vs r'
), grid on xlabel(
'Volume'
),ylabel(
'radius'
)
subplot(2,2,2)
plot(A,r), title(
'A vs r'
), grid on xlabel(
'A'
),ylabel(
'r'
)
subplot(2,2,3)
plot(V,A), title(
'V vs A'
), grid on xlabel(
'Volume'
),ylabel(
'Area'
)
subplot(2,2,4)
plot(r,A), title(
'r vs A'
), grid on xlabel(
'r'
),ylabel(
'A'
)
Problem 5.26
current amount A or pricipal P is invested in a saving account paying an annual interest rate r 4
A=P(1+(r/n)^nt
n is the number of times per yer the interest is compounded
for continuous compounding A=Pe^rt
Suppose $10000 is investeted initially at 2.5%. Plot A vs t 0<=t<=20 years for four different cases:
-continuous compounding -annual compounding (n=1)
-quarterly compounding (n=4)
=monthly compounding (n=12)
Plot and label each curve on the same plot, then on another plot do the difference between amounts obtained from all four
Then, repeat this again but plot A vs t on log-log and semilog plots.
Answer the question: "Which plot givess a straight line?"
Initailize Variables
clc,clear, close all
t=0:.01:20;
p=10000; %principal value r=.025; %annual interest rate Perform Calculations CC=p*exp(r*t); %continuous compounding
AC=p*(1+(r/1).^1*t); %annual compounding
QC=p*(1+(r/4)).^4*t; %quarterly compounding
MC=p*(1+(r/12)).^12*t; %monthly compounding
Plot/ Display results subplot(2,1,1)
plot(t,CC,t,AC,t,QC,t,MC)
subplot(2,1,2)
plot(t,CC-AC,t,AC-QC,t,QC-MC)
5
figure
subplot(2,1,1)
loglog(t,CC,t,AC,t,QC,t,MC)
subplot(2,1,2)
semilogx(t,CC,t,AC,t,QC,t,MC)
6
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Problem 5.39
Plot the surface and contour plots of z=x^2-4xy+6y^2
showing the minimum at x=y=0
Initialize variables clc, clear, close all
[X,Y]=meshgrid(-5:.01:5); %defining the XY grid of interest Z=X.^2-4*X.*Y+6.*Y.^2; %Z=f(x,y)
Display results
mesh(X,Y,Z), xlabel(
'X'
), ylabel(
'Y'
), zlabel(
'Z'
)
grid title(
'Surface plot of z=X.^2-4*X.*Y+6.*Y.^2'
)
7
figure
contour(X,Y,Z), xlabel(
'X'
), ylabel(
'Y'
), zlabel(
'Z'
)
title(
'Contour plot of z=X.^2-4*X.*Y+6.*Y.^2'
)
8
9
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help