AdvancedPlottingAssignment_RebeccaArevalo

pdf

School

Liberty University *

*We aren’t endorsed by this school

Course

133

Subject

Mathematics

Date

Apr 3, 2024

Type

pdf

Pages

9

Uploaded by AmbassadorGoldfinchMaster1211

Report
Advanced Plotting Assignment Becca Arevalo 10/1/2023 Problem 5.4 Do a breakeven analysis for certain chemical product. Fixed cost: $2.045 million per year Variable cost: -Material cost: 62 cents per gallon of product -Energy cost: 24 cents per gallon of product -Labor cost: 16 cents per gallon of product let P be selling price in dollars per gallon. Selling price and sales quantitiy Q is Q=6x10^6-1.110^6P Using the data... -plot the fixed & total variable cost vs. Q -graphically determine the breakeven point (with labels) -Find the range of Q where production is profitable -Find the value for the maximum profit of Q Initialize Variables clc, clear, close all FC=2.045e6; %fixed cost in dollars per year MC=.62; EC=.24; LC=.16; Q=0:1:6e6; %quantity produced/sold in millions of gallons per year Perform calculations VC=MC+EC+LC; %variable cost in dollars per gallon producedTC=FC+Q.*VC; %return total cost per year in millions $ P=(6e6-Q)./(1.1e6); %selling price in dollars per gallon sold TR=Q.*P; %returns total revenue per year in millions TC=FC+Q.*VC; TP=TR-TC; %return profit per year in millions Evaluate Results idx=find(TP>0); %finding all possible indexes where TP is positive min_idx=min(idx); %finding the frist index where TP is positive max_idx=max(idx); %finding second index where TP is positive minBEP=Q(min_idx); %first breakeven point in millions of gallons per year maxBEP=Q(max_idx); %second breakeven point in millions of gallons per year 1
max_TR=max(TR); Display results plot(Q,TC,Q,TR, '--' ) title( 'Chemical Product Economic Model' ) xlabel( 'Quantity Produced/Sold,gallons' ) ylabel( 'Total Revenue/Cost dollars' ) legend( 'Total cost' , 'Totoal revenue' , 'location' , 'Northwest' ) grid on hold on plot(minBEP,TR(minBEP), 'k*' ),text(minBEP,TR(minBEP), 'minBEP' ) hold on plot(maxBEP,TR(maxBEP), 'k*' ),text(maxBEP,TR(maxBEP), 'maxBEP' ) fprintf( 'The first breakeven point occurs at %3.0f million gallons and the second breakeven point occurs at %3.0f. Production is only profitable between these two points. ' ,minBEP,maxBEP) The first breakeven point occurs at 515665 million gallons and the second breakeven point occurs at 4362335. Product fprintf( 'The maximum profit possible is %3.0f' ,max_TR) The maximum profit possible is 8181818 Problem 5.17 2
Initialize variables clc, clear, close all t=linspace(0,2*pi,1000); sin_t=(10^-0.5.*t).*sin(3.*t+2); cos_t=(7^-0.4.*t).*cos(5.*t-3); plot functions/display results plot(t,sin_t,t,cos_t, '--' ), title( 'x(t) and y(t)' ), grid on xlabel( 'Angle in radians' ),ylabel( 'cos and sin' ), legend( 'sin(t)' , 'cos(t)' ) Problem 5.25 The Volume and Area of a sphere are V=(4/3)pi*r^3 A=4*pi*r^2 Plot: -V&A vs r 0.1<=r<=100m -V&r vs A 1<=A<=10e4 m^2 clc, clear, close all r=.01:.1:10e4; 3
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
V=(4/3)*pi*r.^3; A=4*pi*r.^2; Plot and Display results subplot(2,2,1) plot(V,r), title( 'V vs r' ), grid on xlabel( 'Volume' ),ylabel( 'radius' ) subplot(2,2,2) plot(A,r), title( 'A vs r' ), grid on xlabel( 'A' ),ylabel( 'r' ) subplot(2,2,3) plot(V,A), title( 'V vs A' ), grid on xlabel( 'Volume' ),ylabel( 'Area' ) subplot(2,2,4) plot(r,A), title( 'r vs A' ), grid on xlabel( 'r' ),ylabel( 'A' ) Problem 5.26 current amount A or pricipal P is invested in a saving account paying an annual interest rate r 4
A=P(1+(r/n)^nt n is the number of times per yer the interest is compounded for continuous compounding A=Pe^rt Suppose $10000 is investeted initially at 2.5%. Plot A vs t 0<=t<=20 years for four different cases: -continuous compounding -annual compounding (n=1) -quarterly compounding (n=4) =monthly compounding (n=12) Plot and label each curve on the same plot, then on another plot do the difference between amounts obtained from all four Then, repeat this again but plot A vs t on log-log and semilog plots. Answer the question: "Which plot givess a straight line?" Initailize Variables clc,clear, close all t=0:.01:20; p=10000; %principal value r=.025; %annual interest rate Perform Calculations CC=p*exp(r*t); %continuous compounding AC=p*(1+(r/1).^1*t); %annual compounding QC=p*(1+(r/4)).^4*t; %quarterly compounding MC=p*(1+(r/12)).^12*t; %monthly compounding Plot/ Display results subplot(2,1,1) plot(t,CC,t,AC,t,QC,t,MC) subplot(2,1,2) plot(t,CC-AC,t,AC-QC,t,QC-MC) 5
figure subplot(2,1,1) loglog(t,CC,t,AC,t,QC,t,MC) subplot(2,1,2) semilogx(t,CC,t,AC,t,QC,t,MC) 6
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
Problem 5.39 Plot the surface and contour plots of z=x^2-4xy+6y^2 showing the minimum at x=y=0 Initialize variables clc, clear, close all [X,Y]=meshgrid(-5:.01:5); %defining the XY grid of interest Z=X.^2-4*X.*Y+6.*Y.^2; %Z=f(x,y) Display results mesh(X,Y,Z), xlabel( 'X' ), ylabel( 'Y' ), zlabel( 'Z' ) grid title( 'Surface plot of z=X.^2-4*X.*Y+6.*Y.^2' ) 7
figure contour(X,Y,Z), xlabel( 'X' ), ylabel( 'Y' ), zlabel( 'Z' ) title( 'Contour plot of z=X.^2-4*X.*Y+6.*Y.^2' ) 8
9
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help