CEE434-Exam1-Solution

docx

School

University of Illinois, Urbana Champaign *

*We aren’t endorsed by this school

Course

434

Subject

Industrial Engineering

Date

Jan 9, 2024

Type

docx

Pages

4

Uploaded by hdaggett001

Report
Solution: CEE 434 – Exam 1 (2023 Fall) Problem 1 1.1 Formulation of the primary model: z = ¿ η 1 x 1 + η 2 x 2 + η 3 x 3 max ¿ s .t . { L 1 x 1 + L 2 x 2 + L 3 x 3 ≤L W 1 x 1 + W 2 x 2 + W 3 x 3 ≤ R P 1 x 1 + P 2 x 2 + P 3 x 3 ≤TPL x i 0, i = 1,2,3 Decision variables: x 1 , x 2 , x 3 , the number of families willing to move to each community. Data needed: η 1 2 3 , L 1 , L 2 , L 3 ,L,W 1 ,W 2 ,W 3 ,R ,P 1 ,P 2 , P 3 ,TPL 1.2 Check the shadow price (marginal value) for each resource. If the shadow price of a resource is larger than zero (implying the constraint is binding), then that resource will affect the solution. 1.3 Check the reduced cost for the community that is zero. The value of the reduced cost represents the willingness level that needs to be improved for that community to have a certain size in the solution. 1.4 Formulation of the dual model: w = ¿ L y 1 + Ry 2 + TPL y 3 min ¿ s .t . { L 1 y 1 + W 1 y 2 + P 1 y 3 ≥η 1 L 2 y 1 + W 2 y 2 + P 2 y 3 ≥η 2 L 3 y 1 + W 3 y 2 + P 3 y 3 ≥η 3 Objective function: minimize the total opportunity cost of the resources needed for the new communities (from the perspective of society). Constraints: the revenue (the willingness to move to the new communities) cannot exceed the total value of consumed resources. Problem 2 Model formulation: max z = a 1 x 1 b 1 x 1 2 + a 2 x 2 b 2 x 2 2 + a 3 x 3 b 3 x 3 2 s .t . { L 1 x 1 + L 2 x 2 + L 3 x 3 = L W 1 x 1 + W 2 x 2 + W 3 x 3 ≤ R P 1 x 1 + P 2 x 2 + P 3 x 3 ≤TPL x i 0, i = 1,2,3
Standard format: min z ' =− a 1 x 1 + b 1 x 1 2 a 2 x 2 + b 2 x 2 2 a 3 x 3 + b 3 x 3 2 s .t . { L 1 x 1 + L 2 x 2 + L 3 x 3 L = 0 … λ W 1 x 1 + W 2 x 2 + W 3 x 3 R≤ 0 … μ w P 1 x 1 + P 2 x 2 + P 3 x 3 TPL≤ 0 …μ p x i 0, i = 1,2,3 Lagrangian function: L ( x 1 ,x 2 , x 3 , λ,μ ) =− a 1 x 1 + b 1 x 1 2 a 2 x 2 + b 2 x 2 2 a 3 x 3 + b 3 x 3 2 + λ ( L 1 x 1 + L 2 x 2 + L 3 x 3 L ) + μ w ( W 1 x 1 + W 2 x 2 + W 3 x 3 R ) + μ p ( P 1 x 1 + P 2 x 2 + P 3 x 3 TPL ) KKT conditions: Optimality: ∂ L ∂x 1 =− a 1 + 2 b 1 + λ L 1 + μ w W 1 + μ p P 1 = 0 ∂ L ∂x 2 =− a 2 + 2 b 2 + λ L 2 + μ w W 2 + μ p P 2 = 0 ∂ L ∂x 3 =− a 3 + 2 b 3 + λ L 3 + μ w W 3 + μ p P 3 = 0 Feasibility: L 1 x 1 + L 2 x 2 + L 3 x 3 L = 0 W 1 x 1 + W 2 x 2 + W 3 x 3 R≤ 0 P 1 x 1 + P 2 x 2 + P 3 x 3 TPL ≤ 0 Complementary slackness: μ w ( W 1 x 1 + W 2 x 2 + W 3 x 3 R ) = 0 μ p ( P 1 x 1 + P 2 x 2 + P 3 x 3 TPL ) = 0 Nonnegativity: μ w p 0
Problem 3 Model formulation: z = ¿ η 1 x 1 + η 2 x 2 + η 3 x 3 max ¿ min p = P 1 x 1 + P 2 x 2 + P 3 x 3 s .t . { L 1 x 1 + L 2 x 2 + L 3 x 3 ≤ L W 1 x 1 + W 2 x 2 + W 3 x 3 ≤R x i 0, i = 1,2,3 Payoff table: Willingness ( z ) Pollutant ( p ) max z min p In order to obtain the values, we need to set each one of the objectives as the single objective and solve the problems with the same set of constraints, respectively. Problem 4 (Values in bold were to be filled by students) String x f(x) f(x)/∑f(x) 0101 5 125 0.044 0010 2 8 0.003 1010 10 1000 0.350 1100 12 1728 0.604 ∑f(x) = 2861 Pair Mating Pool Crossover Location Generated String 1 1100 1 | 100 1100 1100 1 | 100 1100 2 1010 10 | 10 1000 1100 11 | 00 1110 String x f(x) f(x)/∑f(x) 1100 12 1728 0.257 1100 12 1728 0.257 1000 8 512 0.076 1110 14 2744 0.409 ∑f(x) = 6712 Problem 5
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help