HW_9

Rmd

School

University of Wisconsin, Madison *

*We aren’t endorsed by this school

Course

1203

Subject

Industrial Engineering

Date

Dec 6, 2023

Type

Rmd

Pages

2

Uploaded by PresidentMonkey1089

Report
--- title: "HW 9" author: "Junyu Sui" output: pdf_document: number_sections: true df_print: paged --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE, message = FALSE, warnings = FALSE, fig.align = 'center', eval = TRUE) ``` You can run the following code to prepare the analysis. ```{r} library(r02pro) #INSTALL IF NECESSARY library(tidyverse) #INSTALL IF NECESSARY library(MASS) library(corrplot) library(FactoMineR) library("factoextra") my_ahp <- ahp %>% dplyr::select(gar_car, liv_area, lot_area, bsmt_area, gar_area, oa_qual, sale_price, bedroom, bathroom, yr_built) %>% na.omit() my_ahp_x <- my_ahp %>% dplyr::select(-sale_price) my_ahp_y <- my_ahp %>% dplyr::select(sale_price) ``` 1. Conduct PCA on `my_ahp_x` with `scale = TRUE`. a. Create a biplot. ```{r} pr.ahp <- prcomp(my_ahp_x, scale = TRUE) biplot(pr.ahp, scale = 0) ``` b. Plot the Proportion of Variance Explained and the Cumulative Proportion of Variance Explained. ```{r} pr.var <- pr.ahp$sdev^2 pve <- pr.var / sum(pr.var) par(mfrow = c(1, 2)) # Proportion of variance explained by each of the four components plot(pve, xlab = "Principal Component", ylab = "Proportion of Variance Explained", ylim = c(0, 1), type = "b") # cumulative proportion of variance explained by the four compoents plot(cumsum(pve), xlab = "Principal Component", ylab = "Cumulative Proportion of Variance Explained", ylim = c(0, 1), type = "b") ``` c. Fit a linear regression of `sale_price` on the first two principle components. What's the $R^2$? ```{r} fviz_cos2(pr.ahp, choice = "var", axes = 1:2) fit1<- lm(sale_price ~ pr.ahp$x[,1]+pr.ahp$x[,2 ], data = my_ahp ) summary(fit1) ```
d. Fit a linear regression of `sale_price` on `gar_car` and `liv_area`. What's the $R^2$? ```{r} fit2<- lm(sale_price ~ gar_car+liv_area, data = my_ahp ) summary(fit2) ``` \newpage 2. Conduct PCA on `my_ahp_x` with `scale = FALSE` and compare the results of a-c with those of Q1. a. Create a biplot. ```{r,warning=FALSE} pr.ahp1 <- prcomp(my_ahp_x, scale = FALSE) biplot(pr.ahp1, scale = 0) ``` b. Plot the Proportion of Variance Explained and the Cumulative Proportion of Variance Explained. ```{r} pr.var1 <- pr.ahp1$sdev^2 pve1 <- pr.var1 / sum(pr.var1) par(mfrow = c(1, 2)) # Proportion of variance explained by each of the four components plot(pve1, xlab = "Principal Component", ylab = "Proportion of Variance Explained", ylim = c(0, 1), type = "b") # cumulative proportion of variance explained by the four compoents plot(cumsum(pve1), xlab = "Principal Component", ylab = "Cumulative Proportion of Variance Explained", ylim = c(0, 1), type = "b") ``` c. Fit a linear regression of `sale_price` on the first two principle components. What's the $R^2$? ```{r} fviz_cos2(pr.ahp1, choice = "var", axes = 1:2) fit3 <- lm(sale_price ~ pr.ahp1$x[,1]+pr.ahp1$x[,2], data = my_ahp) summary(fit3) ```
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help