assignment- data analytics
xlsx
keyboard_arrow_up
School
University of British Columbia *
*We aren’t endorsed by this school
Course
354
Subject
Industrial Engineering
Date
Jun 4, 2024
Type
xlsx
Pages
23
Uploaded by JusticePuppy1868
Walter would like to find cost drivers for his landscaping jobs. He asks for your help to run some Walter would like to find cost drivers for his landscaping jobs. He asks for your help to run some Year
Month
Equipment HoNumber of La
DL Hours
Landscaping Cost
1
1
120
10
500
18,000.00
1
2
85
9
450
13,500.00
1
3
105
8
300
8,250.00
1
4
125
12
550
15,000.00
1
5
90
5
475
11,250.00
1
6
110
10
250
9,300.00
1
7
135
8
400
11,250.00
1
8
105
7
400
20,250.00
1
9
145
10
225
14,250.00
1
10
130
10
550
24,000.00
1
11
150
13
625
21,000.00
1
12
155
6
350
14,250.00
2
1
85
8
460
19,800.00
2
2
95
7
575
14,850.00
2
3
115
9
310
9,075.00
2
4
135
10
450
16,500.00
2
5
100
6
485
12,375.00
2
6
120
11
260
10,230.00
2
7
145
9
410
12,375.00
2
8
115
8
410
22,275.00
2
9
105
11
235
15,675.00
2
10
140
11
560
26,400.00
2
11
100
12
635
23,100.00
2
12
80
7
360
15,675.00
3
1
242
9
600
24,010.00
3
2
171
7
585
18,070.00
3
3
103
10
320
13,800.00
3
4
224
8
460
20,050.00
3
5
124
7
285
15,100.00
3
6
270
12
660
24,500.00
3
7
114
5
240
18,500.00
3
8
262
9
420
26,980.00
3
9
257
12
245
19,060.00
3
10
240
8
570
28,400.00
3
11
180
7
645
27,970.00
3
12
144
8
650
19,060.00
cost analyses on three key aspects of his landscaping jobs: equipment hours, number of l
cost analyses on three key aspects of his landscaping jobs: equipment hours, number of l
1. You woud like to first decide which method to use to find cost drivers. Yo
High Low Method
Highest equipment hours
270
Lowest Equipment hours
80
Lowest cost
$24,500 Highest cost
$15,675 Variable cost per unit
$46.45 $11,959.21 Regression analysis is the better choice for identifying multiple or single cos
Number of Larger Trees as a cost driver
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.16107475
Fixed cost Helps deal with complex relationships between variables :
Can handle non
Robust Against Outliers:
Less influenced by outliers compared to the High-L
Statistical Significance:
Provides statistical measures to assess the relations
Handles Multiple Variables:
Can analyze multiple potential cost drivers sim
Better Cost Estimation:
Offers a precise equation for accurate cost predictio
1. Evaluate each of the three possible cost drivers for all 3 years combine
R Square
0.02594507
Adjusted R Square
-0.0027036
Standard Error
5633.24586
Observations
36
ANOVA
df
Regression
1
Residual
34
Total
35
Coefficients
Intercept
13740.0536
X Variable 1
437.266679
DL Hours as a cost driver
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.593675006096
R Square
0.352450012863
Adjusted R Square
0.333404425006
Standard Error
4593.076005044
Observations
36
ANOVA
df
Regression
1
Residual
34
Total
35
Coefficients
Intercept
6905.628243168
X Variable 1
24.23938278818
DL hours and Equipment hours - Multiple Regression
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.736897112884
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
R Square
0.543017354977
Adjusted R Square
0.515321437096
Standard Error
3916.51076537
Observations
36
ANOVA
df
Regression
2
Residual
33
Total
35
Coefficients
Intercept
2337.121200117
X Variable 1
47.0253488266
X Variable 2
19.43897047814
Recommended Model: The recommended regression model for explaining
model that includes both Direct Labor Hours and Equipment Hours as cost d
value (0.5430) compared to the individual regression models for each cost d
0.3525). The adjusted R-Square value also indicates a good fit of the model.
large trees in the project, and direct labor (DL) hours. Data is available for the pa
large trees in the project, and direct labor (DL) hours. Data is available for the pa
ou start with High-Low method and regression methods and use equipment hour
Regression Method
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.575911525778202
R Square
0.331674085524176
Adjusted R Square
0.31201744098077
Standard Error
4666.17618896739
Observations
36
ANOVA
df
Regression
1
Residual
34
Total
35
Coefficients
Intercept
9093.34923832664
X Variable 1
59.9042037532203
st drivers and the reasons are as follows:
n-linear relationships more accurately.
Low method.
ship’s significance.
multaneously, in this case we only considered equipment hours but there are two
ons.
ed by using the method you selected. If more than one cost driver is statistically
SS
MS
F
28738745.2
28738745.2
0.90562914
1078937602
31733458.9
1107676347
Standard Error
t Stat
P-value
4178.39368
3.28835783
0.00234848
459.484842
0.95164549
0.34799335
SS
MS
F
390400542.826459
390400542.826459
18.5055990662913
717275804.395763
21096347.1881107
1107676347.22222
Standard Error
t Stat
P-value
2604.47819322806
2.65144406319994
0.012084780081324
5.63468941630828
4.30181346251686
0.000135248087534
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
SS
MS
F
601487480.238789
300743740.119395
19.6064039951808
506188866.983433
15339056.5752555
1107676347.22222
Standard Error
t Stat
P-value
2539.44142351311
0.9203288480993
0.364080090413375
12.6765382424646
3.70963648964274
0.000760891147788
4.97590331309505
3.90662142228109
0.00043822896048
g Walter's landscaping costs is the multiple regression drivers. This model has a significantly higher R-Square driver (R-Square values ranging from 0.0259 to .
ast 3 years.
ast 3 years.
rs as the driver. You find the more approporite you would like to go and show the reasons to Walter
SS
MS
F
Significance F
367387539.52169 367387539.52 16.87338268 0.000237541
740288807.700532 21773200.226
1107676347.22222
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
2215.46009213388 4.1044969714 0.000239762
4590.99263 13595.70585
4590.99263
14.5833138302589 4.1077223223 0.000237541 30.26734429 89.54106321 30.26734429
o other potential cost drivers that we may want to evaluate.
significant, consider running a multiple regression model, evaluating the validity of this model. which re
Significance F
0.34799335
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
5248.53597
22231.5712
5248.53597
22231.5712
-496.51887
1371.05223
-496.51887
1371.05223
Significance F
0.000135248087534
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
1612.6917353428 12198.564751 1612.691735 12198.56475
12.7883161601731 35.690449416 12.78831616 35.69044942
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Significance F
2.44537330099048E-06
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
-2829.41122299648 7503.6536232 -2829.41122 7503.653623
21.2347378536025
72.8159598 21.23473785
72.8159598
9.31541906901582 29.562521887 9.315419069 29.56252189
Upper 95.0%
13595.70585
89.54106321
egression model should you recommend that Walter use to explain his landscaping costs? Specif
fy the recommended mode
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.57591153
R Square
0.33167409
Adjusted R S
0.31201744
Standard Erro 4666.17619
Observations
36
ANOVA
df
SS
MS
F
Significance F
Regression
1
367387540
367387540 16.8733827 0.00023754
Residual
34
740288808 21773200.2
Total
35 1107676347
CoefficientsStandard Error
t Stat
P-value
Lower 95%
Upper 95%
Intercept
9093.34924 2215.46009 4.10449697 0.00023976 4590.99263 13595.7058
X Variable 1
59.9042038 14.5833138 4.10772232 0.00023754 30.2673443 89.5410632
Lower 95.0% Upper 95.0%
4590.99263 13595.7058
30.2673443 89.5410632
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.16107475
R Square
0.02594507
Adjusted R S
-0.0027036
Standard Erro 5633.24586
Observations
36
ANOVA
df
SS
MS
F
Significance F
Regression
1 28738745.2 28738745.2 0.90562914 0.34799335
Residual
34 1078937602 31733458.9
Total
35 1107676347
CoefficientsStandard Error
t Stat
P-value
Lower 95%
Upper 95%
Intercept
13740.0536 4178.39368 3.28835783 0.00234848 5248.53597 22231.5712
X Variable 1
437.266679 459.484842 0.95164549 0.34799335 -496.518869 1371.05223
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Lower 95.0% Upper 95.0%
5248.53597 22231.5712
-496.518869 1371.05223
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.73689711
R Square
0.54301735
Adjusted R S
0.51532144
Standard Erro 3916.51077
Observations
36
ANOVA
df
SS
MS
F
Significance F
Regression
2
601487480
300743740
19.606404 2.44537E-06
Residual
33
506188867 15339056.6
Total
35 1107676347
CoefficientsStandard Error
t Stat
P-value
Lower 95%
Upper 95%
Intercept
2337.1212 2539.44142 0.92032885 0.36408009 -2829.41122 7503.65362
X Variable 1
47.0253488 12.6765382 3.70963649 0.00076089 21.2347379 72.8159598
X Variable 2
19.4389705 4.97590331 3.90662142 0.00043823 9.31541907 29.5625219
Lower 95.0% Upper 95.0%
-2829.41122 7503.65362
21.2347379 72.8159598
9.31541907 29.5625219
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.73691201
R Square
0.54303931
Adjusted R S
0.51447927
Standard Erro 3976.86583
Observations
35
ANOVA
df
SS
MS
F
Significance F
Regression
2
601428888
300714444 19.0139527 3.61461E-06
Residual
32
506094779 15815461.9
Total
34 1107523667
CoefficientsStandard Error
t Stat
P-value
Lower 95%
Upper 95%
Intercept
2331.55309 2579.58562 0.90384792
0.3728304 -2922.89087 7585.99706
120 47.1178631 12.9276531 3.64473448 0.00093917 20.7850954 73.4506308
500 19.4020908 5.07515823 3.82295288 0.00057438 9.06433175 29.7398498
Lower 95.0% Upper 95.0%
-2922.89087 7585.99706
20.7850954 73.4506308
9.06433175 29.7398498
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.59367501
R Square
0.35245001
Adjusted R S
0.33340443
Standard Erro 4593.07601
Observations
36
ANOVA
df
SS
F
Significance F
Regression
1
390400543 18.5055991 0.00013525
Residual
34
717275804
Total
35 1107676347
CoefficientsStandard Error
P-value
Lower 95%
Upper 95%
Lower 95.0%
Intercept
6905.62824 2604.47819 0.01208478 1612.69174 12198.5648 1612.69174
X Variable 1
24.2393828 5.63468942 0.00013525 12.7883162 35.6904494 12.7883162
Year
Month
Equipment HDL Hours
Landscaping Cost
1
1
120
500
18,000.00
1
2
85
450
13,500.00
1
3
105
300
8,250.00
1
4
125
550
15,000.00
1
5
90
475
11,250.00
1
6
110
250
9,300.00
1
7
135
400
11,250.00
1
8
105
400
20,250.00
1
9
145
225
14,250.00
1
10
130
550
24,000.00
1
11
150
625
21,000.00
1
12
155
350
14,250.00
2
1
85
460
19,800.00
2
2
95
575
14,850.00
2
3
115
310
9,075.00
2
4
135
450
16,500.00
2
5
100
485
12,375.00
2
6
120
260
10,230.00
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
2
7
145
410
12,375.00
2
8
115
410
22,275.00
2
9
105
235
15,675.00
2
10
140
560
26,400.00
2
11
100
635
23,100.00
2
12
80
360
15,675.00
3
1
242
600
24,010.00
3
2
171
585
18,070.00
3
3
103
320
13,800.00
3
4
224
460
20,050.00
3
5
124
285
15,100.00
3
6
270
660
24,500.00
3
7
114
240
18,500.00
3
8
262
420
26,980.00
3
9
257
245
19,060.00
3
10
240
570
28,400.00
3
11
180
645
27,970.00
3
12
144
650
19,060.00
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Upper 95.0%
12198.5648
35.6904494
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help