Lab 2
pdf
keyboard_arrow_up
School
California Polytechnic State University, San Luis Obispo *
*We aren’t endorsed by this school
Course
340
Subject
English
Date
Apr 3, 2024
Type
Pages
9
Uploaded by CountPuppyPerson4268
BRAE 340 Irrigation Water Management 1 Flow Measurement BRAE 340 Irrigation Water Management Lab – Flow Measurement Name: ______________________________ Date: _______________________________ BRAE 340 Lab: Day: ____________ Time: ___________ Names of Others in Your Discussion Group: _________________________________ _________________________________ _________________________________ _________________________________ _________________________________ _________________________________
BRAE 340 Irrigation Water Management 2 Flow Measurement Flow Measurement Introduction The goal of this lab is to give you some experience with different types of water measurement devices. Water measurement is important because it is difficult to manage a resource if you have no idea what the flow rate is or how much (volume) of the resource has been used. Irrigation districts in many cases must be able to measure water in order to deliver and bill for the correct amount. Farmers must understand flow rate and volumes to effectively manage their irrigation systems and schedule irrigations. As you work with the different devices, think about how each measurement might be more or less accurate than the others, and under what conditions this might be so. Read the instructions and questions below before completing the lab. Lab Preparation
Watch the tutorials and lab videos on Canvas prior to completing the labs. You will use data that you must collect from the Part 2 video to answer the questions and determine the flow rate for each device.
Field Work While the canal is still dry, take all the measurements necessary to describe the size of that device. The instructor will start the flow through the canal and adjust the valve at the meter gate as necessary. Once the flow rate has stabilized, take the measurements necessary to estimate the flow through each device. Data Collection Use the Data Collection and Analysis forms below to record the values for your measurements that you will get from the videos. Data Analysis Use the flow rate tables (on Canvas) to determine the flow rate through each device. Draw a bar graph illustrating the results of your calculations on the grid area provided (after the Data Collection and Analysis forms). Learning to plot your graph in Excel would be a very useful skill to have – try it! Discussion Questions Think about the questions at the back of the lab. Write your own answers to the questions in the space provided. Grading • Participation (5%) • Data Collection & Analysis (55%) • Discussion Questions (40%) Useful Conversion Factors
• 1 acre-foot = 43,560 cubic feet • mm ÷ 25.4 = inches • GPM ÷ 448.8 = cfs • inches ÷ 12 = feet • Gallon ÷ 7.48 = cubic feet I
9
p
m
=
4
4
8
.
8
4
s
BRAE 340 Irrigation Water Management 3 Flow Measurement Data Collection and Analysis Magnetic Meter (10 pts) Flow Rate (Direct Reading) Flow Rate (large number): ________________ GPM = _____________________ CFS (Meter Reading) (Computed) Calculated Flow Rate (Volume /Time) Start of Lab (Volume) Meter Reading at Start of Lab: ____________________ gal @ Time (Start): ____________ End of Lab (Volume) Meter Reading at End of Lab: _____________________ gal @ Time (End): ____________ Volume Pumped & Duration of Pumping Duration = Time at end of Lab – Time at start of Lab Duration: _____ min _____ sec Convert to seconds
Duration: ___________ seconds Volume = Reading at End of Lab – Reading at Start of Lab ____________________ gal - ____________________ gal = _________________ gallons Convert to cubic feet
Volume = ____________ cubic feet Flow Rate Average Flow Rate (cfs) = Volume (cu-ft) ÷ Duration (sec) ____________ ÷ ___________ = ___________ CFS Metergate (5 pts)
Determine the flow rate using the provided table. H = head measured in millimeters (use the stilling wells) Stem Height (valve open): __________ mm Upstream Height: _________________ mm Stem Height (valve closed): _________ mm Downstream Height: _______________ mm Valve Opening: ________ mm Head Difference: _______ Flow Rate = __________CFS Head
Concrete Canal
Inlet Pipe
A
S
t
h
i
d
p
a
s
s
e
s
t
h
r
o
u
g
h
t
h
e
p
i
p
e
,
a
v
o
l
t
a
g
e
d
i
r
e
c
t
l
y
p
r
o
p
o
r
t
i
o
n
a
l
t
o
t
h
e
f
l
o
w
r
a
t
e
i
s
g
e
n
e
r
a
t
e
d
.
+
1
-
2
%
e
x
.
f
l
a
s
h
i
n
g
1
0
0
0
9
p
m
1
2
3
4
5
6
7
8
9
g
a
l
l
o
n
s
s
t
a
r
t
?
1
2
3
4
5
9
7
8
9
e
n
d
=
3
0
0
0
g
a
l
i
n
✗
t
i
m
e
s
h
o
u
l
d
=
f
l
o
w
r
a
t
e
.
1
5
5
6
5
9
0
3
5
2
.
3
9
m
¥
x
,
4
8
5
4
,
=
4
7
.
0
9
8
9
3
5
2
.
3
-
c
o
u
l
d
n
'
t
q
u
i
t
e
t
e
l
l
5
5
1
5
1
8
.
3
9
6
5
6
2
6
0
5
.
8
2
2
3
1
m
i
n
✗
6
0
s
e
c
/
m
i
n
=
1
8
6
0
+
2
2
0
:
0
0
4
1
0
0
.
8
1
5
1
5
3
1
:
2
2
3
1
2
2
1
8
8
2
5
6
2
6
0
5
.
8
2
2
5
5
1
5
1
8
.
3
9
6
1
1
0
8
7
.
4
2
6
1
4
8
2
.
2
8
1
1
0
8
7
.
4
2
6
7
.
4
8
=
1
4
8
2
.
2
8
1
4
8
2
.
2
8
1
8
8
2
0
.
7
8
7
1
0
5
0
.
7
8
5
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
BRAE 340 Irrigation Water Management 4 Flow Measurement Triangular Weir / V-notch Weir
(5 pts)
The equation is: Flow Rate (CFS) = 0.00154 x H
2.5
/ 1000 H = head measured in millimeters (use the stilling well) Head (H): ___________________ mm Flow Rate = ____________________CFS Submerged Orifice (5 pts)
Orifice = 3" x 18" The equation is: Flow Rate (CFS) = 0.28 x Area (ft
2
) x H
0.5 H = head measured in millimeters (use a ruler) Upstream Measurement: ________ mm Downstream Measurement: _______ mm Head Difference (H) = Downstream Measurement – Upstream Measurement Head Difference (H): ___________ mm Flow Rate = ____________________CFS Trapezoidal Weir (18-in)
(5 pts)
The equation is: Flow Rate (CFS) = 0.00095 x H
1.5 H = head measured in millimeters (use the stilling well)
Head (H): ____________________ mm Flow Rate = ____________________CFS Head
Head (H) Head (H) c
r
i
t
i
c
a
l
f
l
o
w
d
e
v
i
c
e
1
8
8
2
4
6
2
9
0
c
r
i
t
i
c
a
l
f
l
o
w
d
e
v
i
c
e
8
9
0
.
7
5
4
4
D
.
7
0
0
.
8
0
BRAE 340 Irrigation Water Management 5 Flow Measurement ITRC Weir Stick in Trapezoidal Weir (5 pts)
Staff Reading (D): _______ Width (ft): ________ Flow Rate = D x Width (ft)_________CFS Rectangular Weir (12-in) (5 pts)
Determine the flow rate using the provided table. The equation is: Flow Rate (CFS) = 0.00063 x (1 - H/1524) x H
1.5
H = head measured in millimeters (use the stilling well) Head (H): __________________ mm Flow Rate = __________________CFS Parshall Flume (5 pts)
The equation is: Flow Rate (CFS) = 2.06 x H
1.58
H = head measured in feet (use the staff gauge) Head (H): ___________________ ft Flow Rate = __________________CFS Head
Head (H) Height (D) 1
.
5
f
t
0
.
5
1
1
8
0
.
5
4
0
.
7
5
0
.
7
4
0
.
7
8
BRAE 340 Irrigation Water Management 6 Flow Measurement Replogle Flume (5 pts)
Determine the flow rate using the provided table. Head (H) = _____________ mm Flow Rate = ____________________CFS Bar Graph (5 pts) On the following page, complete the bar graph illustrating the results of your flow rate measurements and calculations in the area below. Use a vertical bar for each flow rate measurement. Show the “correct” flow rate using the magnetic meter - the result from the “Calculated Flow Rate (Volume/Time)” - as a straight horizontal line
so that it is easy to compare each individual measurement. Head 1
3
7
0
.
7
C
F
S
0
.
7
8
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
BRAE 340 Irrigation Water Management 7 Flow Measurement Discussion Questions (5 pts each) Discuss the questions posed among your group, taking notes as necessary to remember the key points of the discussion. Write your own answers to the questions in the space provided. 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
Mag Meter (Reading)
Mag Meter (Calculated)
Metergate
V-notch
Submerged Orifice
Trapezoidal Weir
ITRC Weir Stick
Rectangular Weir
Parshall Flume
Replogle Flume
Flow Rate (CFS)
Measurement Device
Flow Rates Measured in CFS
p
u
r
p
l
e
l
i
n
e
=
c
a
l
c
u
l
a
t
e
d
f
l
o
w
r
a
t
e
0
.
7
8
5
BRAE 340 Irrigation Water Management 8 Flow Measurement 1.
Based on the data you gathered, which device has the most deviation in flow rate from the magnetic meter? Does that make the other devices more accurate? Why or why not?
2.
How would “dead stem” affect the reading from a meter gate? Explain how you account for it. 3.
What condition is needed, for a pipeline meter (like the mag meter), to read the flow rate correctly? Explain
. 4.
Why would someone choose to use the trapezoidal weir over a triangular weir for flow measurement? Explain
. H
u
m
a
n
e
r
r
o
r
i
n
r
e
a
d
i
n
g
A
c
c
u
r
a
c
y
o
f
m
e
a
s
u
r
e
m
e
n
t
T
h
e
m
o
s
t
d
e
v
i
a
t
i
o
n
w
a
s
i
n
t
h
e
s
u
b
m
e
r
g
e
d
o
r
f
a
c
e
.
I
d
o
n
'
t
b
e
l
i
e
v
e
t
h
i
s
m
a
k
e
s
t
h
e
o
t
h
e
r
d
e
v
i
c
e
s
m
o
r
e
a
c
c
u
r
a
t
e
o
r
l
e
s
s
b
a
s
e
d
o
n
o
n
e
s
e
t
o
f
d
a
t
a
c
o
l
l
e
c
t
e
d
.
I
f
o
u
n
d
i
t
s
l
i
g
h
t
l
y
d
i
f
f
i
c
u
l
t
t
o
t
a
k
e
a
n
a
c
c
u
r
a
t
e
r
e
a
d
i
n
g
o
f
t
h
e
u
p
s
t
r
e
a
m
a
n
d
d
o
w
n
s
t
r
e
a
m
m
e
a
s
u
r
e
m
e
n
t
s
s
o
h
u
m
a
n
e
r
r
o
r
i
s
l
i
k
e
l
y
f
o
r
t
h
e
g
r
e
a
t
e
r
d
e
v
i
a
t
i
o
n
.
T
o
d
e
t
e
r
m
i
n
e
w
h
i
c
h
s
y
s
t
e
m
i
s
m
o
s
t
a
c
c
u
r
a
t
e
I
w
o
u
l
d
b
e
m
o
r
e
c
o
n
f
i
d
e
n
t
a
f
t
e
r
r
u
n
n
i
n
g
m
u
l
t
i
p
l
e
t
r
i
a
l
s
t
o
s
e
e
i
f
I
c
o
u
l
d
m
i
t
i
g
a
t
e
s
o
m
e
h
u
m
a
n
e
r
r
o
r
.
I
a
l
s
o
b
e
l
i
e
v
e
e
a
c
h
s
y
s
t
e
m
i
s
o
n
l
y
s
o
a
c
c
u
r
a
t
e
j
u
s
t
b
y
h
o
w
i
t
i
s
m
a
d
e
o
r
u
s
e
d
.
d
e
a
d
s
t
e
m
i
s
w
h
a
t
o
c
c
u
r
s
w
h
e
n
i
n
i
t
i
a
l
l
y
o
p
e
n
i
n
g
a
m
e
t
e
r
g
a
t
e
.
T
h
e
v
a
l
v
e
i
s
t
u
r
n
i
n
g
y
e
t
t
h
e
g
a
t
e
i
s
n
o
t
y
e
t
o
p
e
n
i
n
g
w
h
i
c
h
w
o
u
l
d
s
w
a
y
t
h
e
m
e
a
s
u
r
e
m
e
n
t
s
.
T
o
a
c
c
o
u
n
t
f
o
r
t
h
i
s
,
y
o
u
d
o
n
o
t
t
a
k
e
a
n
i
n
i
t
i
a
l
s
t
e
m
r
e
a
d
i
n
g
u
n
t
i
l
t
h
e
w
h
e
e
l
b
e
c
o
m
e
s
d
i
f
f
i
c
u
l
t
t
o
m
o
v
e
.
T
h
i
s
w
i
l
l
g
i
v
e
a
m
o
r
e
a
c
c
u
r
a
t
e
m
e
a
s
u
r
e
m
e
n
t
.
T
h
e
p
i
p
e
l
i
n
e
n
e
e
d
s
t
o
b
e
f
u
l
l
.
T
h
e
m
e
t
e
r
w
i
l
l
r
e
a
d
r
e
g
a
r
d
l
e
s
s
o
f
a
m
o
u
n
t
o
f
w
a
t
e
r
d
u
e
t
o
e
l
e
c
t
r
i
c
i
t
y
b
e
i
n
g
c
o
n
d
u
c
t
e
d
o
r
a
p
r
o
p
e
l
l
e
r
r
o
t
a
t
i
n
g
e
t
c
.
.
.
s
o
,
t
o
e
n
s
u
r
e
a
p
r
o
p
e
r
r
e
a
d
i
n
g
,
t
h
e
p
i
p
e
n
e
e
d
s
t
o
b
e
f
u
l
l
t
o
a
c
c
u
r
a
t
e
l
y
d
e
t
e
r
m
i
n
e
t
h
e
v
e
l
o
c
i
t
y
o
f
w
a
t
e
r
a
n
d
i
n
t
u
r
n
a
n
a
c
c
u
r
a
t
e
f
l
o
w
r
a
t
e
.
S
o
m
e
o
n
e
m
e
a
s
u
r
i
n
g
a
l
a
r
g
e
f
l
o
w
r
a
t
e
w
o
u
l
d
w
a
n
t
t
o
u
s
e
a
t
r
a
p
e
z
o
i
d
a
l
w
e
i
r
o
v
e
r
a
t
r
i
a
n
g
u
l
a
r
w
e
i
r
.
w
h
e
n
t
h
e
d
i
s
c
h
a
r
g
e
d
w
a
t
e
r
e
x
c
e
e
d
s
t
h
e
s
i
z
e
o
f
t
h
e
v
,
t
h
e
e
x
c
e
s
s
w
a
t
e
r
m
o
v
e
s
o
v
e
r
t
h
e
w
e
i
r
a
n
d
c
o
u
l
d
n
o
t
b
e
a
c
c
u
r
a
t
e
l
y
m
e
a
s
u
r
e
d
.
A
t
r
a
p
e
z
o
i
d
a
l
w
e
i
r
a
l
l
e
v
i
a
t
e
s
t
h
i
s
p
r
o
b
l
e
m
b
y
h
a
v
i
n
g
a
g
r
e
a
t
e
r
s
t
r
e
t
c
h
o
f
w
e
i
r
f
o
r
w
a
t
e
r
t
o
f
l
o
w
o
v
e
r
i
n
t
u
r
n
a
l
l
o
w
i
n
g
a
m
o
r
e
a
c
c
u
r
a
t
e
m
e
a
s
u
r
e
m
e
n
t
BRAE 340 Irrigation Water Management 9 Flow Measurement 5.
What is “head loss” and how did you determine it with the submerged orifice? Explain.
6.
What is a critical flow device? List two critical flow devices that you used in lab. 7.
What is the approximate flow rate (gpm) in a pipeline with a diameter of 18 inches and a velocity of 4.9 ft/sec? Show your work
. 8.
When using an ITRC weir stick, what must you include for the reading to be accurate? Why?
T
h
e
"
h
e
a
d
1
0
5
5
"
i
s
t
h
e
d
e
c
r
e
a
s
e
i
n
f
l
u
i
d
p
r
e
s
s
u
r
e
f
r
o
m
t
h
e
u
p
s
t
r
e
a
m
t
o
d
o
w
n
s
t
r
e
a
m
s
i
d
e
s
o
f
a
n
o
r
i
f
i
c
e
.
T
h
i
s
i
s
f
o
u
n
d
b
y
m
e
a
s
u
r
i
n
g
t
h
e
p
r
e
s
s
u
r
e
(
d
e
p
t
h
)
u
p
s
t
r
e
a
m
a
n
d
t
h
e
p
r
e
s
s
u
r
e
(
d
e
p
t
h
)
d
o
w
n
s
t
r
e
a
m
a
n
d
t
a
k
i
n
g
t
h
e
d
i
f
f
e
r
e
n
c
e
o
f
t
h
e
t
w
o
m
e
a
s
u
r
e
m
e
n
t
s
.
w
e
d
i
d
t
h
i
s
b
y
t
a
k
i
n
g
m
e
a
s
u
r
e
m
e
n
t
s
o
n
e
i
t
h
e
r
s
i
d
e
o
f
t
h
e
o
r
n
f
i
c
e
.
A
c
r
i
t
i
c
a
l
f
l
o
w
d
e
v
i
c
e
i
s
a
d
e
v
i
c
e
w
h
o
s
e
m
e
a
s
u
r
e
m
e
n
t
s
a
r
e
s
t
a
n
d
a
r
d
i
z
e
d
w
h
i
c
h
a
l
l
o
w
s
f
o
r
m
e
a
s
u
r
e
m
e
n
t
s
t
o
b
e
d
i
r
e
c
t
l
y
c
o
r
o
l
a
t
i
v
e
t
o
a
f
l
o
w
r
a
t
e
.
F
o
r
o
n
e
d
e
p
t
h
t
h
e
r
e
i
s
o
n
e
c
o
r
r
e
s
p
o
n
d
i
n
g
f
l
o
w
r
a
t
e
.
T
w
o
c
r
i
t
i
c
a
l
f
l
o
w
d
e
v
i
c
e
s
w
e
u
s
e
d
i
n
l
a
b
a
r
e
t
h
e
t
r
i
a
n
g
u
l
a
r
w
e
i
r
a
n
d
t
h
e
p
a
r
s
h
a
l
l
f
l
u
m
e
.
1
8
i
n
✗
1
2
¥
,
=
1
.
5
f
t
I
T
1
1
.
5
2
)
=
1
.
7
6
7
f
t
²
=
A
4
✗
1
.
7
4
7
f
t
-
=
g
.
6
6
c
e
s
8
.
6
6
C
F
S
✗
4
4
8
.
8
9
P
M
=
3
8
8
6
.
1
7
1
C
F
S
9
p
m
y
o
u
m
u
s
t
i
n
c
l
u
d
e
t
h
e
r
u
n
u
p
o
n
t
h
e
s
t
i
c
k
.
T
h
i
s
c
r
e
a
t
e
s
a
m
o
r
e
a
c
c
u
r
a
t
e
r
e
a
d
i
n
g
t
h
a
t
c
o
m
p
e
n
s
a
t
e
s
f
o
r
t
h
e
d
e
c
r
e
a
s
e
i
n
d
e
p
t
h
a
t
t
h
e
w
e
i
r
c
a
u
s
e
d
b
y
t
h
e
c
u
r
v
a
t
u
r
e
o
f
t
h
e
w
a
t
e
r
.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help