ECE3101HW13Sol

pdf

School

California State University, Fullerton *

*We aren’t endorsed by this school

Course

3301

Subject

Electrical Engineering

Date

Jan 9, 2024

Type

pdf

Pages

33

Uploaded by CorporalPower10655

Report
1 ECE 3101 HOMEWORK #13 Solutions © Dr. James Kang, Professor, ECE Department, Cal Poly Pomona 1. Find the discrete-time Fourier transform (DTFT), X( θ ), and plot |X( θ )| and X( θ ) for 0 ≤ θ π for the following signals. Find X(z) from the z-transform table, and set z = e j θ . (a) x(k) = (0.8) k u(k). X( θ ) = 1/(1-0.8e -j θ ) (b) x(k) = (0.8) |k| . X( θ ) = (1-0.8 2 )/[(1-0.8e -j θ )(1-0.8e j θ )] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 θ / π |X( θ )| Magnitude 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.4 -0.3 -0.2 -0.1 0 θ / π X( θ )/ π Phase
2 (c) x(k) = k(0.8) k u(k). X( θ ) = 0.8e -j θ /(1-0.8e -j θ ) 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 2 4 6 8 10 θ / π |X( θ )| Magnitude 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -1 -0.5 0 0.5 1 θ / π X( θ )/ π Phase 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5 10 15 20 25 θ / π |X( θ )| Magnitude
3 (d) x(k) = k 2 (0.8) k u(k). X( θ ) = (0.8e -j θ +0.8 2 e -j2 θ )/(1-0.8e -j θ ) 3 2. Find the discrete-time Fourier transform (DTFT), X( θ ), and plot |X( θ )| and X( θ ) for 0 ≤ θ π for the following signals. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -1 -0.8 -0.6 -0.4 -0.2 0 θ / π X( θ )/ π Phase 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 50 100 150 200 θ / π |X( θ )| Magnitude 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -1 -0.5 0 0.5 1 θ / π X( θ )/ π Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
4 Find X(z) from the z-transform table, and set z = e j θ . (a) x(k) = (0.8) k cos( π k/4) u(k). X( θ ) = [1- cos(π/4)0.8exp( -j θ )]/[1-2cos( π /4)0.8exp(-j θ )+0.8 2 exp(-j2 θ )] = [1-0.5657exp(-j θ )]/[1-1.1314exp(-j θ )+0.64exp(-j2 θ )] (b) x(k) = (0.8) k sin( π k/4) u(k). X( θ ) = [sin(π/4)0.8exp( -j θ )]/[1-2cos( π /4)0.8exp(-j θ )+0.8 2 exp(-j2 θ )] = [0.5657exp(-j θ )]/[1-1.1314exp(-j θ )+0.64exp(-j2 θ )] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 θ / π |X( θ )| Magnitude 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -0.4 -0.2 0 0.2 0.4 θ / π X( θ )/ π Phase 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 θ / π |X( θ )| Magnitude
5 (c) x(k) = k (0.8) k cos( π k/4) u(k). X( θ ) = [cos(π/4)0.8exp( -j θ )-2 × 0.8 2 × exp(-j2 θ )+cos( π /4) × 0.8 3 × exp(-j3 θ )]/[1- 2cos( π /4)0.8exp(-j θ )+0.8 2 exp(-j2 θ )] 2 [0.5657exp(-j θ )-1.62 × exp(-j2 θ )+0.362 × exp(-j3 θ )]/[1-1.1314exp(-j θ )+0.64exp(-j2 θ )] 2 (d) x(k) = k (0.8) k sin( π k/4) u(k). X( θ ) = [sin (π/4)0.8exp( -j θ )-sin( π /4) × 0.8 3 × exp(-j3 θ )]/[1-2cos( π /4)0.8exp(-j θ )+0.8 2 exp(- j2 θ )] 2 [0.5657exp(-j θ )-0.362 × exp(-j3 θ )]/[1-1.1314exp(-j θ )+0.64exp(-j2 θ )] 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -1 -0.5 0 θ / π X( θ )/ π Phase 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5 10 θ / π |X( θ )| Magnitude 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -1 -0.5 0 0.5 1 θ / π X( θ )/ π Phase
6 3. Find the 8-point (N = 8) discrete Fourier transform (DFT), X(n), and plot |X(n)| and X(n) for 0 ≤ n ≤ 7 for the following signals. (a) x(k) = (0.8) k [u(k) u(k 8)]. x(k) X(n) |X(n)| X(n) 1.0000 4.1611 4.1611 0 0.8000 0.7106 - 0.9256i 1.1669 -0.9160 0.6400 0.5075 - 0.4060i 0.6499 -0.6747 0.5120 0.4702 - 0.1699i 0.4999 -0.3467 0.4096 0.4623 - 0.0000i 0.4623 -0.0000 0.3277 0.4702 + 0.1699i 0.4999 0.3467 0.2621 0.5075 + 0.4060i 0.6499 0.6747 0.2097 0.7106 + 0.9256i 1.1669 0.9160 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5 10 15 θ / π |X( θ )| Magnitude 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -1 -0.5 0 0.5 1 θ / π X( θ )/ π Phase 0 1 2 3 4 5 6 7 0 1 2 3 4 5 n |X n | Magnitude Response
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
7 (b) x(k) = k(0.8) k [u(k) u(k 8)]. x(k) X(n) |X(n)| X(n) 0 9.9337 9.9337 0 0.8000 -2.2793 + 0.8376i 2.4284 2.7894 1.2800 -1.2145 + 0.5656i 1.3397 2.7057 1.5360 -0.9975 + 0.2519i 1.0288 2.8942 1.6384 -0.9511 - 0.0000i 0.9511 -3.1416 1.6384 -0.9975 - 0.2519i 1.0288 -2.8942 1.5729 -1.2145 - 0.5656i 1.3397 -2.7057 1.4680 -2.2793 - 0.8376i 2.4284 -2.7894 (c) x(k) = k 2 (0.8) k [u(k) u(k 8)]. 0 1 2 3 4 5 6 7 -1 -0.5 0 0.5 1 n X n Phase Response 0 1 2 3 4 5 6 7 0 2 4 6 8 10 n |X n | Magnitude Response 0 1 2 3 4 5 6 7 -4 -2 0 2 4 n X n Phase Response
8 x(k) X(n) |X(n)| X(n) 0 42.4268 42.4268 0 0.8000 -7.7726 +16.1120i 17.8889 2.0203 2.5600 -5.4436 + 5.8920i 8.0218 2.3167 4.6080 -5.3346 + 2.3577i 5.8324 2.7254 6.5536 -5.3253 - 0.0000i 5.3253 -3.1416 8.1920 -5.3346 - 2.3577i 5.8324 -2.7254 9.4372 -5.4436 - 5.8920i 8.0218 -2.3167 10.2760 -7.7726 -16.1120i 17.8889 -2.0203 4. Find the 8-point (N = 8) discrete Fourier transform (DFT), X(n), and plot |X(n)| and X(n) for 0 ≤ n ≤ 7 for the following signals. (a) x(k) = [1 1 1 1 1 1 1 1]. 𝑋𝑋 ( 𝑛𝑛 ) = 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑁𝑁−1 𝑗𝑗=0 = 𝑒𝑒 −𝑗𝑗0𝑗𝑗 2𝜋𝜋 𝑁𝑁 + 𝑒𝑒 −𝑗𝑗1𝑗𝑗 2𝜋𝜋 𝑁𝑁 + 𝑒𝑒 −𝑗𝑗2𝑗𝑗 2𝜋𝜋 𝑁𝑁 + 𝑒𝑒 −𝑗𝑗3𝑗𝑗 2𝜋𝜋 𝑁𝑁 + 𝑒𝑒 −𝑗𝑗4𝑗𝑗 2𝜋𝜋 𝑁𝑁 + 𝑒𝑒 −𝑗𝑗5𝑗𝑗 2𝜋𝜋 𝑁𝑁 + 𝑒𝑒 −𝑗𝑗6𝑗𝑗 2𝜋𝜋 𝑁𝑁 + 𝑒𝑒 −𝑗𝑗7𝑗𝑗 2𝜋𝜋 𝑁𝑁 X(0) = 1+1+1+1+1+1+1+1 = 8 For n > 0, X(n) = 0. x(k) X(n) |X(n)| X(n) 1.0000 8.0000 8.0000 0 1.0000 -0.0000 + 0.0000i 0.0000 0 1.0000 -0.0000 - 0.0000i 0.0000 0 1.0000 -0.0000 + 0.0000i 0.0000 0 1.0000 0 - 0.0000i 0.0000 0 0 1 2 3 4 5 6 7 0 10 20 30 40 50 n |X n | Magnitude Response 0 1 2 3 4 5 6 7 -4 -2 0 2 4 n X n Phase Response
9 1.0000 -0.0000 - 0.0000i 0.0000 0 1.0000 -0.0000 - 0.0000i 0.0000 0 1.0000 0.0000 + 0.0000i 0.0000 0 X(n) = 0 (b) x(k) = [1 1 1 1 0 0 0 0]. 𝑋𝑋 ( 𝑛𝑛 ) = � 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑁𝑁−1 𝑗𝑗=0 = 𝑒𝑒 −𝑗𝑗0𝑗𝑗 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗1𝑗𝑗 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2𝑗𝑗 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗3𝑗𝑗 2𝜋𝜋 8 X(0) = 1 + 𝑒𝑒 −𝑗𝑗1 × 0 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 0 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗3 × 0 2𝜋𝜋 8 = 1 + 1 + 1 + 1 = 4 X(1) = 1 + 𝑒𝑒 −𝑗𝑗1 × 1 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 1 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗3 × 1 2𝜋𝜋 8 = 1 – j2.4142 = 2.6131e -j1.1781 X(2) = 1 + 𝑒𝑒 −𝑗𝑗1 × 2 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 2 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗3 × 2 2𝜋𝜋 8 = 0 X(3) = 1 + 𝑒𝑒 −𝑗𝑗1 × 3 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 3 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗3 × 3 2𝜋𝜋 8 = 1 – j0.4142 = 1.0824e -j0.3927 X(4) = 1 + 𝑒𝑒 −𝑗𝑗1 × 4 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 4 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗3 × 4 2𝜋𝜋 8 = 0 X(5) = 1 + 𝑒𝑒 −𝑗𝑗1 × 5 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 5 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗3 × 5 2𝜋𝜋 8 = 1 + j0.4142 = 1.0824e j0.3927 X(6) = 1 + 𝑒𝑒 −𝑗𝑗1 × 6 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 6 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗3 × 6 2𝜋𝜋 8 = 0 X(7) = 1 + 𝑒𝑒 −𝑗𝑗1 × 7 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 7 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗3 × 7 2𝜋𝜋 8 = 1 + j2.4142 = 2.6131e j1.1781 x(k) X(n) |X(n)| X(n) 1.0000 4.0000 4.0000 0 0 1 2 3 4 5 6 7 0 2 4 6 8 n |X n | Magnitude Response 0 1 2 3 4 5 6 7 -1 -0.5 0 0.5 1 n X n Phase Response
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
10 1.0000 1.0000 - 2.4142i 2.6131 -1.1781 1.0000 -0.0000 - 0.0000i 0.0000 0 1.0000 1.0000 - 0.4142i 1.0824 -0.3927 0 0 - 0.0000i 0.0000 0 0 1.0000 + 0.4142i 1.0824 0.3927 0 0.0000 - 0.0000i 0.0000 0 0 1.0000 + 2.4142i 2.6131 1.1781 (c) x(k) = [1 1 -1 -1 1 1 -1 -1]. 𝑋𝑋 ( 𝑛𝑛 ) = � 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑁𝑁−1 𝑗𝑗=0 = 𝑒𝑒 −𝑗𝑗0𝑗𝑗 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗1𝑗𝑗 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗2𝑗𝑗 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3𝑗𝑗 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4𝑗𝑗 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗5𝑗𝑗 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗6𝑗𝑗 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗7𝑗𝑗 2𝜋𝜋 8 X(0) = 1 + 𝑒𝑒 −𝑗𝑗1 × 0 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗2 × 0 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 0 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 0 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗5 × 0 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗6 × 0 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 0 2𝜋𝜋 8 = 0 X(1) = 1 + 𝑒𝑒 −𝑗𝑗1 × 1 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗2 × 1 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 1 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 1 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗5 × 1 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗6 × 1 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 1 2𝜋𝜋 8 = 0 X(2) = 1 + 𝑒𝑒 −𝑗𝑗1 × 2 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗2 × 2 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 2 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 2 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗5 × 2 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗6 × 2 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 2 2𝜋𝜋 8 = 4-j4 0 1 2 3 4 5 6 7 0 1 2 3 4 n |X n | Magnitude Response 0 1 2 3 4 5 6 7 -3 -2 -1 0 1 2 n X n Phase Response
11 X(3) = 1 + 𝑒𝑒 −𝑗𝑗1 × 3 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗2 × 3 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 3 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 3 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗5 × 3 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗6 × 3 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 3 2𝜋𝜋 8 = 0 X(4) = 1 + 𝑒𝑒 −𝑗𝑗1 × 4 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗2 × 4 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 4 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 4 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗5 × 4 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗6 × 4 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 4 2𝜋𝜋 8 = 0 X(5) = 1 + 𝑒𝑒 −𝑗𝑗1 × 5 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗2 × 5 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 5 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 5 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗5 × 5 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗6 × 5 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 5 2𝜋𝜋 8 = 0 X(6) = 1 + 𝑒𝑒 −𝑗𝑗1 × 6 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗2 × 6 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 6 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 6 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗5 × 6 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗6 × 6 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 6 2𝜋𝜋 8 = 4+j4 X(7) = 1 + 𝑒𝑒 −𝑗𝑗1 × 7 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗2 × 7 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 7 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 7 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗5 × 7 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗6 × 7 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 7 2𝜋𝜋 8 = 0 x(k) X(n) |X(n)| X(n) 1.0000 0 0 0 1.0000 0.0000 - 0.0000i 0.0000 0 -1.0000 4.0000 - 4.0000i 5.6569 -0.7854 -1.0000 -0.0000 + 0.0000i 0.0000 0 1.0000 0 0 0 1.0000 0.0000 - 0.0000i 0.0000 0 -1.0000 4.0000 + 4.0000i 5.6569 0.7854 -1.0000 -0.0000 - 0.0000i 0.0000 0 0 1 2 3 4 5 6 7 0 2 4 6 n |X n | Magnitude Response
12 (d) x(k) = [1 -1 1 -1 1 -1 1 -1]. 𝑋𝑋 ( 𝑛𝑛 ) = � 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑁𝑁−1 𝑗𝑗=0 = 𝑒𝑒 −𝑗𝑗0𝑗𝑗 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗1𝑗𝑗 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2𝑗𝑗 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3𝑗𝑗 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4𝑗𝑗 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗5𝑗𝑗 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗6𝑗𝑗 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗7𝑗𝑗 2𝜋𝜋 8 X(0) = 1 − 𝑒𝑒 −𝑗𝑗1 × 0 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 0 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 0 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 0 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗5 × 0 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗6 × 0 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 0 2𝜋𝜋 8 = 0 X(1) = 1 − 𝑒𝑒 −𝑗𝑗1 × 1 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 1 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 1 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 1 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗5 × 1 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗6 × 1 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 1 2𝜋𝜋 8 = 0 X(2) = 1 − 𝑒𝑒 −𝑗𝑗1 × 2 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 2 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 2 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 2 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗5 × 2 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗6 × 2 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 2 2𝜋𝜋 8 = 0 X(3) = 1 − 𝑒𝑒 −𝑗𝑗1 × 3 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 3 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 3 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 3 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗5 × 3 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗6 × 3 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 3 2𝜋𝜋 8 = 0 X(4) = 1 − 𝑒𝑒 −𝑗𝑗1 × 4 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 4 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 4 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 4 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗5 × 4 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗6 × 4 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 4 2𝜋𝜋 8 = 8 X(5) = 1 − 𝑒𝑒 −𝑗𝑗1 × 5 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 5 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 5 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 5 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗5 × 5 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗6 × 5 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 5 2𝜋𝜋 8 = 0 X(6) = 1 − 𝑒𝑒 −𝑗𝑗1 × 6 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 6 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 6 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 6 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗5 × 6 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗6 × 6 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 6 2𝜋𝜋 8 = 0 X(7) = 1 − 𝑒𝑒 −𝑗𝑗1 × 7 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗2 × 7 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗3 × 7 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗4 × 7 2𝜋𝜋 8 − 𝑒𝑒 −𝑗𝑗5 × 7 2𝜋𝜋 8 + 𝑒𝑒 −𝑗𝑗6 × 7 2𝜋𝜋 8 𝑒𝑒 −𝑗𝑗7 × 7 2𝜋𝜋 8 = 0 x(k) X(n) |X(n)| X(n) 1.0000 0 0 0 -1.0000 0.0000 - 0.0000i 0.0000 0 1.0000 0.0000 - 0.0000i 0.0000 0 -1.0000 0.0000 - 0.0000i 0.0000 0 0 1 2 3 4 5 6 7 -1 -0.5 0 0.5 1 n X n Phase Response
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
13 1.0000 8.0000 + 0.0000i 8.0000 0 -1.0000 -0.0000 + 0.0000i 0.0000 0 1.0000 0.0000 - 0.0000i 0.0000 0 -1.0000 -0.0000 - 0.0000i 0.0000 0 5. For the following periodic signals, find the coefficients d n of the discrete-time Fourier series representation, and plot |d n | and d n . 𝑑𝑑 𝑗𝑗 = 1 𝑁𝑁 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑗𝑗 1 +𝑁𝑁−1 𝑗𝑗=𝑗𝑗 1 , 0 ≤ 𝑛𝑛 ≤ 𝑁𝑁 − 1 𝑥𝑥 ( 𝑘𝑘 ) = � 𝑑𝑑 𝑗𝑗 𝑒𝑒 𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑁𝑁−1 𝑗𝑗=0 , 0 ≤ 𝑘𝑘 ≤ 𝑁𝑁 − 1 (a) N = 10 0 1 2 3 4 5 6 7 0 2 4 6 8 n |X n | Magnitude Response 0 1 2 3 4 5 6 7 -1 -0.5 0 0.5 1 n X n Phase Response
14 𝑑𝑑 𝑗𝑗 = 1 𝑁𝑁 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑗𝑗 1 +𝑁𝑁−1 𝑗𝑗=𝑗𝑗 1 = 1 10 1 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 𝑗𝑗 2 𝑗𝑗=−2 = 1 10 �𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( −2 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( −1 ) + 1 + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 1 + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 2 = 1 10 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛 2𝜋𝜋 10 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛 4𝜋𝜋 10 �� d 0 = 1 10 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 0 2𝜋𝜋 10 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 0 4𝜋𝜋 10 �� =5/10 = 0.5 d 1 = 1 10 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 1 2𝜋𝜋 10 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 1 4𝜋𝜋 10 �� = 0.3236 d 2 = 1 10 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 2 2𝜋𝜋 10 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 2 4𝜋𝜋 10 �� = 0 ….. x(k) d(n) |d(n)| d(n) 1.0000 0.5000 0.5000 0 1.0000 0.3236 + 0.0000i 0.3236 0 1.0000 -0.0000 - 0.0000i 0.0000 0 0 -0.1236 - 0.0000i 0.1236 -3.1416 0 0.0000 - 0.0000i 0.0000 0 0 0.1000 0.1000 0 0 0 - 0.0000i 0.0000 0 0 -0.1236 - 0.0000i 0.1236 -3.1416 1.0000 0.0000 - 0.0000i 0.0000 0 1.0000 0.3236 + 0.0000i 0.3236 0 -20 -15 -10 -5 0 5 10 15 20 0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5 6 7 8 9 0 0.2 0.4 0.6 0.8 n |d n | Magnitude
15 (b) 𝑑𝑑 𝑗𝑗 = 1 𝑁𝑁 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑗𝑗 1 +𝑁𝑁−1 𝑗𝑗=𝑗𝑗 1 = 1 10 1 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 𝑗𝑗 4 𝑗𝑗=0 = 1 10 �𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 0 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 1 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 2 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 3 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 4 ) = 1 10 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 2 ) �𝑒𝑒 𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 2 ) + 𝑒𝑒 𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 1 ) + 1 + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 1 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 2 ) = 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 2 ) 1 10 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛 2𝜋𝜋 10 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛 4𝜋𝜋 10 �� d 0 = 1 10 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 0 2𝜋𝜋 10 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 0 4𝜋𝜋 10 �� =5/10 = 0.5 d 1 = 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 ( 2 ) 1 10 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 1 2𝜋𝜋 10 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 1 4𝜋𝜋 10 �� = 0.3236e -j1.2655 d 2 = 1 10 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 2 2𝜋𝜋 10 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 2 4𝜋𝜋 10 �� = 0 ….. x(k) d(n) |d(n)| d(n) 1.0000 0.5000 0.5000 0 1.0000 0.1000 - 0.3078i 0.3236 -1.2566 1.0000 -0.0000 - 0.0000i 0.0000 0 1.0000 0.1000 - 0.0727i 0.1236 -0.6283 1.0000 0.0000 - 0.0000i 0.0000 0 0 0.1000 + 0.0000i 0.1000 0 0 0.0000 - 0.0000i 0.0000 0 0 0.1000 + 0.0727i 0.1236 0.6283 0 0.0000 - 0.0000i 0.0000 0 0 1 2 3 4 5 6 7 8 9 -4 -3 -2 -1 0 n d n Phase -20 -15 -10 -5 0 5 10 15 20 0 0.2 0.4 0.6 0.8 1
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
16 0 0.1000 + 0.3078i 0.3236 1.2566 (c) N = 12. 𝑑𝑑 𝑗𝑗 = 1 𝑁𝑁 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑗𝑗 1 +𝑁𝑁−1 𝑗𝑗=𝑗𝑗 1 = 1 12 1 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 𝑗𝑗 3 𝑗𝑗=−3 = 1 12 �𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( −3 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( −2 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( −1 ) + 1 + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 1 + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 2 + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 3 = 1 12 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛 2𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛 4𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛 6𝜋𝜋 12 �� d 0 = 1 12 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 0 2𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 0 4𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 0 6𝜋𝜋 12 �� =7/12 = 0.5833 d 1 = 1 12 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 1 2𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 1 4𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 1 6𝜋𝜋 12 �� = 0.110 0 1 2 3 4 5 6 7 8 9 0 0.2 0.4 0.6 0.8 n |d n | Magnitude 0 1 2 3 4 5 6 7 8 9 -2 -1 0 1 2 n d n Phase -20 -15 -10 -5 0 5 10 15 20 0 0.2 0.4 0.6 0.8 1
17 d 2 = 1 12 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 2 2𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 2 4𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 2 6𝜋𝜋 12 �� = -0.0833 ….. x(k) d(n) |d(n)| d(n) 1.0000 0.5833 0.5833 0 1.0000 0.3110 + 0.0000i 0.3110 0 1.0000 -0.0833 + 0.0000i 0.0833 3.1416 1.0000 -0.0833 - 0.0000i 0.0833 -3.1416 0 0.0833 - 0.0000i 0.0833 0 0 0.0223 + 0.0000i 0.0223 0 0 -0.0833 + 0.0000i 0.0833 3.1416 0 0.0223 - 0.0000i 0.0223 0 0 0.0833 - 0.0000i 0.0833 0 1.0000 -0.0833 + 0.0000i 0.0833 3.1416 1.0000 -0.0833 - 0.0000i 0.0833 -3.1416 1.0000 0.3110 + 0.0000i 0.3110 0 (d) N = 12 0 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 n |d n | Magnitude 0 2 4 6 8 10 12 -4 -2 0 2 4 n d n Phase
18 𝑑𝑑 𝑗𝑗 = 1 𝑁𝑁 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑗𝑗 1 +𝑁𝑁−1 𝑗𝑗=𝑗𝑗 1 = 1 12 1 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 12 𝑗𝑗 6 𝑗𝑗=0 = 1 12 �𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 0 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 1 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 2 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 3 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 4 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 5 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 6 ) = 1 12 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 3 ) �𝑒𝑒 𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 3 ) + 𝑒𝑒 𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 2 ) + 𝑒𝑒 𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 1 ) + 1 + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 1 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 2 ) + 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 3 ) = 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 ( 3 ) 1 12 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛 2𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛 4𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛 6𝜋𝜋 12 �� d 0 = 1 12 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 0 2𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 0 4𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 0 6𝜋𝜋 12 �� =7/12 = 0.5833 d 1 = 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 12 ( 3 ) 1 12 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 1 2𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 1 4𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 1 6𝜋𝜋 12 �� = -0.3110 d 2 = 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 12 ( 3 ) 1 12 1 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 2 2𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 2 4𝜋𝜋 12 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 � 2 6𝜋𝜋 12 �� = 0.0833 ….. x(k) d(n) |d(n)| d(n) 1.0000 0.5833 0.5833 0 1.0000 0.0000 - 0.3110i 0.3110 -1.5708 1.0000 0.0833 + 0.0000i 0.0833 0 1.0000 0.0000 - 0.0833i 0.0833 -1.5708 1.0000 0.0833 - 0.0000i 0.0833 0 1.0000 0.0000 - 0.0223i 0.0223 -1.5708 1.0000 0.0833 - 0.0000i 0.0833 0 0 0.0000 + 0.0223i 0.0223 1.5708 0 0.0833 + 0.0000i 0.0833 0 0 0.0000 + 0.0833i 0.0833 1.5708 0 0.0833 + 0.0000i 0.0833 0 0 -0.0000 + 0.3110i 0.3110 1.5708 -20 -15 -10 -5 0 5 10 15 20 0 0.2 0.4 0.6 0.8 1
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
19 6. For the following periodic signals, find the coefficients d n of the discrete-time Fourier series representation, and plot |d n | and d n . (a) N = 5. 𝑑𝑑 𝑗𝑗 = 1 𝑁𝑁 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑗𝑗 1 +𝑁𝑁−1 𝑗𝑗=𝑗𝑗 1 = 1 5 0 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 12 0 + 1 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 12 1 + 2 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 12 2 + 3 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 12 3 + 4 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 12 4 d 0 = 1 5 0 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 5 0 + 1 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 5 1 + 2 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 5 2 + 3 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 5 3 + 4 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 5 4 = 1 5 (0 + 1 + 2 + 3 + 4) = 2 0 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 n |d n | Magnitude 0 2 4 6 8 10 12 -2 -1 0 1 2 n d n Phase -10 -8 -6 -4 -2 0 2 4 6 8 10 0 1 2 3 4 5
20 d 1 = 1 5 0 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 5 0 + 1 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 5 1 + 2 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 5 2 + 3 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 5 3 + 4 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 5 4 = -0.5+j0.6882 d 2 = 1 5 0 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 5 0 + 1 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 5 1 + 2 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 5 2 + 3 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 5 3 + 4 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 5 4 = -0.5+j0.1625 ….. x(k) d(n) |d(n)| d(n) 0 2.0000 2.0000 0 1.0000 -0.5000 + 0.6882i 0.8507 2.1991 2.0000 -0.5000 + 0.1625i 0.5257 2.8274 3.0000 -0.5000 - 0.1625i 0.5257 -2.8274 4.0000 -0.5000 - 0.6882i 0.8507 -2.1991 (b) N = 10. 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 n |d n | Magnitude 0 0.5 1 1.5 2 2.5 3 3.5 4 -4 -2 0 2 4 n d n Phase -20 -15 -10 -5 0 5 10 15 20 0 1 2 3 4 5
21 𝑑𝑑 𝑗𝑗 = 1 𝑁𝑁 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑗𝑗 1 +𝑁𝑁−1 𝑗𝑗=𝑗𝑗 1 = 1 10 0 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 4 d 0 = 1 10 0 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 4 = 1 10 (0 + 1 + 2 + 3 + 4) = 1 d 1 = 1 10 0 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 4 = -0.2736-j0.7694 d 2 = 1 10 0 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 4 = -0.25+j0.3441 ….. x(k) d(n) |d(n)| d(n) 0 1.0000 1.0000 0 1.0000 -0.2736 - 0.7694i 0.8166 -1.9125 2.0000 -0.2500 + 0.3441i 0.4253 2.1991 3.0000 0.1736 - 0.1816i 0.2513 -0.8080 4.0000 -0.2500 + 0.0812i 0.2629 2.8274 0 0.2000 + 0.0000i 0.2000 0 0 -0.2500 - 0.0812i 0.2629 -2.8274 0 0.1736 + 0.1816i 0.2513 0.8080 0 -0.2500 - 0.3441i 0.4253 -2.1991 0 -0.2736 + 0.7694i 0.8166 1.9125 7. For the following periodic signals, find the coefficients d n of the discrete-time Fourier series representation, and plot |d n | and d n . 0 1 2 3 4 5 6 7 8 9 0 0.2 0.4 0.6 0.8 1 n |d n | Magnitude 0 1 2 3 4 5 6 7 8 9 -4 -2 0 2 4 n d n Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
22 (a) Period = N = 10, one period of x(k) for 0 ≤ k ≤ 9 is given by 𝑥𝑥 ( 𝑘𝑘 ) = (0.8) 𝑗𝑗 , 0 ≤ 𝑘𝑘 ≤ 9 𝑑𝑑 𝑗𝑗 = 1 𝑁𝑁 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑗𝑗 1 +𝑁𝑁−1 𝑗𝑗=𝑗𝑗 1 = 1 10 1 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 0 + 0.8 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 1 + 0. 8 2 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 2 + . . . . . +0. 8 9 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 9 d 0 = 1 10 1 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 0 + 0.8 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 1 + 0. 8 2 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 2 + . . . . . +0. 8 9 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 9 = 1 10 1−0 . 8 10 1−0 . 8 = 0.4463 d 1 = 1 10 1 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 0 + 0.8 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 1 + 0. 8 2 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 2 + . . . . . +0. 8 9 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 9 = 0.0911-j0.1215 d 2 = 1 10 1 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 0 + 0.8 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 1 + 0. 8 2 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 2 + . . . . . +0. 8 9 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 9 = 0.0587-j0.0593 ….. x(k) d(n) |d(n)| d(n) 1.0000 0.4463 0.4463 0 0.8000 0.0911 - 0.1215i 0.1518 -0.9271 0.6400 0.0587 - 0.0593i 0.0834 -0.7907 0.5120 0.0522 - 0.0318i 0.0611 -0.5478 0.4096 0.0501 - 0.0143i 0.0521 -0.2781 0.3277 0.0496 - 0.0000i 0.0496 0 0.2621 0.0501 + 0.0143i 0.0521 0.2781 0.2097 0.0522 + 0.0318i 0.0611 0.5478 0.1678 0.0587 + 0.0593i 0.0834 0.7907 0.1342 0.0911 + 0.1215i 0.1518 0.9271 0 1 2 3 4 5 6 7 8 9 0 0.1 0.2 0.3 0.4 0.5 n |d n | Magnitude
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
23 (b) Period = N = 10, one period of x(k) for 0 ≤ k ≤ 9 is given by 𝑥𝑥 ( 𝑘𝑘 ) = 𝑘𝑘 (0.8) 𝑗𝑗 , 0 ≤ 𝑘𝑘 ≤ 9 𝑑𝑑 𝑗𝑗 = 1 𝑁𝑁 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑗𝑗 1 +𝑁𝑁−1 𝑗𝑗=𝑗𝑗 1 = 1 10 0 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 0 + 0.8 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 1 + 2 × 0. 8 2 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 2 + . . . . . +9 × 0. 8 9 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 9 d 0 = 1 10 0 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 0 + 0.8 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 1 + 2 × 0. 8 2 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 2 + . . . . . +9 × 0. 8 9 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 9 = 1.2484 d 1 = 1 10 0 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 0 + 0.8 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 1 + 2 × 0. 8 2 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 2 + . . . . . +9 × 0. 8 9 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 9 = - 0.2730+j0.0196 d 2 = 1 10 0 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 0 + 0.8 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 1 + 2 × 0. 8 2 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 2 + . . . . . +9 × 0. 8 9 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 9 = - 0.13+j0.0527 ….. x(k) d(n) |d(n)| d(n) 0 1.2484 1.2484 0 0.8000 -0.2730 + 0.0196i 0.2737 3.0700 1.2800 -0.1300 + 0.0527i 0.1403 2.7567 1.5360 -0.0958 + 0.0329i 0.1013 2.8106 1.6384 -0.0845 + 0.0155i 0.0859 2.9608 1.6384 -0.0817 - 0.0000i 0.0817 -3.1416 1.5729 -0.0845 - 0.0155i 0.0859 -2.9608 1.4680 -0.0958 - 0.0329i 0.1013 -2.8106 1.3422 -0.1300 - 0.0527i 0.1403 -2.7567 1.2080 -0.2730 - 0.0196i 0.2737 -3.0700 0 1 2 3 4 5 6 7 8 9 -1 -0.5 0 0.5 1 n d n Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
24 8. For the following periodic signals, find the coefficients d n of the discrete-time Fourier series representation, and plot |d n | and d n . (a) Period = N = 10, one period of x(k) f or 0 ≤ k ≤ 9 is given by 𝑥𝑥 ( 𝑘𝑘 ) = 𝑘𝑘 , 0 ≤ 𝑘𝑘 ≤ 4 5,5 ≤ 𝑘𝑘 ≤ 9 𝑑𝑑 𝑗𝑗 = 1 𝑁𝑁 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑗𝑗 1 +𝑁𝑁−1 𝑗𝑗=𝑗𝑗 1 = 1 10 0 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 4 + 5 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 5 + 5 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 6 +5 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 7 + 5 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 8 + 5 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 9 d 0 = 1 10 0 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 4 + 5 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 5 + 5 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 6 +5 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 7 + 5 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 8 + 5 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 9 =(0+1+2+3+4+5+5+5+5+5)/10=35/10=3.5 d 1 = 1 10 0 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 4 + 5 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 5 + 5 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 6 +5 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 7 + 5 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 8 + 5 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 9 0 1 2 3 4 5 6 7 8 9 0 0.2 0.4 0.6 0.8 1 1.2 1.4 n |d n | Magnitude 0 1 2 3 4 5 6 7 8 9 -4 -2 0 2 4 n d n Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
25 = -0.7736+j0.7694 d 2 = 1 10 0 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 4 + 5 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 5 + 5 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 6 +5 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 7 + 5 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 8 + 5 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 9 = -0.25+j0.3441 ….. x(k) d(n) |d(n)| d(n) 0 3.5000 3.5000 0 1.0000 -0.7736 + 0.7694i 1.0911 2.3589 2.0000 -0.2500 + 0.3441i 0.4253 2.1991 3.0000 -0.3264 + 0.1816i 0.3735 2.6338 4.0000 -0.2500 + 0.0812i 0.2629 2.8274 5.0000 -0.3000 - 0.0000i 0.3000 -3.1416 5.0000 -0.2500 - 0.0812i 0.2629 -2.8274 5.0000 -0.3264 - 0.1816i 0.3735 -2.6338 5.0000 -0.2500 - 0.3441i 0.4253 -2.1991 5.0000 -0.7736 - 0.7694i 1.0911 -2.3589 0 1 2 3 4 5 6 7 8 9 0 0.5 1 1.5 2 2.5 3 3.5 n |d n | Magnitude
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
26 (b) Period = N = 10, one period of x(k) for 0 ≤ k ≤ 9 is given by 𝑥𝑥 ( 𝑘𝑘 ) = 𝑘𝑘 , 0 ≤ 𝑘𝑘 ≤ 3 4,4 ≤ 𝑘𝑘 ≤ 6 10 − 𝑘𝑘 , 7 ≤ 𝑘𝑘 ≤ 9 𝑑𝑑 𝑗𝑗 = 1 𝑁𝑁 𝑥𝑥 ( 𝑘𝑘 ) 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 𝑁𝑁 𝑗𝑗 𝑗𝑗 1 +𝑁𝑁−1 𝑗𝑗=𝑗𝑗 1 = 1 10 0 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 4 + 4 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 5 + 4 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 6 +3 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 7 + 2 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 8 + 1 𝑒𝑒 −𝑗𝑗𝑗𝑗 2𝜋𝜋 10 9 d 0 = 1 10 0 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 4 + 4 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 5 + 4 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 6 +3 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 7 + 2 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 8 + 1 𝑒𝑒 −𝑗𝑗0 2𝜋𝜋 10 9 = 2.4 d 1 = 1 10 0 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 4 + 4 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 5 + 4 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 6 +3 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 7 + 2 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 8 + 1 𝑒𝑒 −𝑗𝑗1 2𝜋𝜋 10 9 = - 0.9472 d 2 = 1 10 0 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 0 + 1 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 1 + 2 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 2 + 3 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 3 + 4 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 4 + 4 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 5 + 4 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 6 +3 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 7 + 2 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 8 + 1 𝑒𝑒 −𝑗𝑗2 2𝜋𝜋 10 9 = - 0.1 ….. x(k) d(n) |d(n)| d(n) 0 2.4000 2.4000 0 1.0000 -0.9472 - 0.0000i 0.9472 -3.1416 0 1 2 3 4 5 6 7 8 9 -4 -3 -2 -1 0 1 2 3 n d n Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
27 2.0000 -0.1000 - 0.0000i 0.1000 -3.1416 3.0000 -0.0528 - 0.0000i 0.0528 -3.1416 4.0000 -0.1000 - 0.0000i 0.1000 -3.1416 4.0000 -0.0000 + 0.0000i 0.0000 0 4.0000 -0.1000 0.1000 3.1416 3.0000 -0.0528 + 0.0000i 0.0528 3.1416 2.0000 -0.1000 - 0.0000i 0.1000 -3.1416 1.0000 -0.9472 - 0.0000i 0.9472 -3.1416 9. Let the input data be x(k) = [1 3 2 5 9 6 7 4 ] t . This data is applied to 8-point (N = 8) radix- 2 FFT calculator. Find the values everywhere for (a) decimation in time radix-2 FFT x(0) = 1, x(1) = 3, x(2) = 2, x(3) = 5, x(4) = 9, x(5) = 6, x(6) = 7, x(7) = 4 0 1 2 3 4 5 6 7 8 9 0 0.5 1 1.5 2 2.5 n |d n | Magnitude 0 1 2 3 4 5 6 7 8 9 -4 -2 0 2 4 n d n Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
28 x(0) x(4) x(2) x(6) x(1) x(5) x(3) x(7) 𝑊𝑊 8 1 = 𝑒𝑒 −𝑗𝑗 2𝜋𝜋 8 1 = 1 √2 − 𝑗𝑗 1 √2 = 0.7071 − 𝑗𝑗 0.7071 , 𝑊𝑊 8 2 = 𝑒𝑒 −𝑗𝑗 2𝜋𝜋 8 2 = −𝑗𝑗 𝑊𝑊 8 3 = 𝑒𝑒 −𝑗𝑗 2𝜋𝜋 8 3 = 1 2 − 𝑗𝑗 1 2 = 0.7071 − 𝑗𝑗 0.7071 B it reversed order: x(0) = 1, x(4) = 9 , x(2) = 2, x(6) = 7, x(1) = 3, x(5) = 6, x(3) = 5 , x(7) = 4 X1(0) =x(0)+x(4)=10, X1(1) = x(0)-x(4)=-8, X1(2) =x(2)+x(6)=9, X1(3) = (x(2)-x(6)) 𝑊𝑊 8 2 = j5, X1(4) =x(1)+x(5)=9, X1(5) =x(1)-x(5)= -3, X1(6) =x(3)+x(7)= 9, X1(7) = (x(3)-x(7)) 𝑊𝑊 8 2 = -j. X2(0)=X1(0)+X1(2)=19, X2(1)=X1(1)+X1(3)=-8+j5, X2(2)=X1(0)-X1(2)=1, X2(3)=X1(1)-X1(3)=-8-j5,X2(4)=X1(4)+X1(6)=18, X2(5)=(X1(5)+X1(7)) 𝑊𝑊 8 1 =- 2.8284+j1.4142, X2(6)=(X1(4)-X1(6)) 𝑊𝑊 8 2 =0, X2(7)=(X1(5)-X1(7)) 𝑊𝑊 8 3 =2.8284+j1.4142 X(0)=X2(0)+X2(4) =19+18=37 X(1)=X2(1)+X2(5)=(-8+j5)+( -2.8284+j1.4142)= -10.8284 + j6.4142 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 W N 2 W N 1 W N -1 -1 2 W N 3 W N X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X1(0) X1(1) X1(2) X1(3) X1(4) X1(5) X1(6) X1(7) X2(0) X2(1) X2(2) X2(3) X2(4) X2(5) X2(6) X2(7) -1
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
29 X(2)=X2(2)+X2(6)=(1)+( 0)= 1 X(3)=X2(3)+X2(7)= (-8+j5)+( -2.8284+j1.4142)= -5.1716 - j3.5858 X(4)=X2(0)-X2(4)=(19)-( 18)= 1 X(5)=X2(1)-X2(5)=(-8+j5)-( -2.8284+j1.4142)= -5.1716 + j3.5858 X(6)=X2(2)-X2(6)=(1)-( 0)= 1 X(7)=X2(3)-X2(7)= (-8+j5)-( -2.8284+j1.4142)= -10.8284 - j6.4142 (b) decimation in frequency radix-2 FFT x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(0) = 1, x(1) = 3, x(2) = 2, x(3) = 5, x(4) = 9, x(5) = 6, x(6) = 7, x(7) = 4 X1(0) =x(0)+x(4)=10, X1(1) =x(1)+x(5)=9, X1(2) =x(2)+x(6)=9, X1(3)=x(3)+x(7)=9, X1(4)=x(0)-x(4)=-8, X1(5)=(x(1)-x(5)) 𝑊𝑊 8 1 = -2.1213+j2.1213, X1(6)=(x(2)-x(6)) 𝑊𝑊 8 2 = j5, X1(7) = (x(3)-x(7)) 𝑊𝑊 8 3 = -0.7071-j0.7071 X2(0)=X1(0)+X1(2)=19, X2(1)=X1(1)+X1(3)=18, X2(2)= X1(0)-X1(2)=1, X2(3)= (X1(1)-X1(3)) 𝑊𝑊 8 2 =0 X2(4)=X1(4)+X1(6)=-8+j5, X2(5)=X1(5)+X1(7) =-2.8284+j1.4142, -1 -1 -1 -1 -1 -1 -1 -1 -1 2 W N 2 W N 1 W N -1 -1 2 W N 3 W N X(0) X(4) X(2) X(6) X(1) X(5) X(3) X(7) X 1 (0) X 1 (1) X 1 (2) X 1 (3) X 1 (4) X 1 (5) X 1 (6) X 1 (7) X 2 (0) X 2 (1) X 2 (2) X 2 (3) X 2 (4) X 2 (5) X 2 (6) X 2 (7) -1
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
30 X2(6)=X1(4)-X1(6)=-8-j5, X2(7)=(X1(5)-X1(7)) 𝑊𝑊 8 2 =2.8284+j1.4142 X(0)=X2(0)+X2(1) =19+18=37 X(4)=X2(0)-X2(1)=(19)-( 18)= 1 X(2)=X2(2)+X2(3)=(1)+( 0)= 1 X(6)=X2(2)-X2(3)=(1)-( 0)= 1 X(1)=X2(4)+X2(5)=(-8+j5)+( -2.8284+j1.4142)= -10.8284 + j6.4142 X(5)=X2(4)-X2(5)=(-8+j5)-( -2.8284+j1.4142)= -5.1716 + j3.5858 X(3)=X2(6)+X2(7)= (-8+j5)+( -2.8284+j1.4142)= -5.1716 - j3.5858 X(7)=X2(6)-X2(7)= (-8+j5)-( -2.8284+j1.4142)= -10.8284 - j6.4142 Applying bit reverse order, we get X(0)=X2(0)+X2(1) =19+18=37 X(1)=X2(4)+X2(5)=(-8+j5)+( -2.8284+j1.4142)= -10.8284 + j6.4142 X(2)=X2(2)+X2(3)=(1)+( 0)= 1 X(3)=X2(6)+X2(7)= (-8+j5)+( -2.8284+j1.4142)= -5.1716 - j3.5858 X(4)=X2(0)-X2(1)=(19)-( 18)= 1 X(5)=X2(4)-X2(5)=(-8+j5)-( -2.8284+j1.4142)= -5.1716 + j3.5858 X(6)=X2(2)-X2(3)=(1)-( 0)= 1 X(7)=X2(6)-X2(7)= (-8+j5)-( -2.8284+j1.4142)= -10.8284 - j6.4142 37.0000 -10.8284 + 6.4142i 1.0000 -5.1716 - 3.5858i 1.0000 -5.1716 + 3.5858i 1.0000 -10.8284 - 6.4142i 10. Let the transform X(n) be 43.0000 6.0711 - 0.5858i 5.0000 + 6.0000i -8.0711 + 3.4142i 7.0000 -8.0711 - 3.4142i 5.0000 - 6.0000i 6.0711 + 0.5858i This data is applied to 8-point (N = 8) radix- 2 IFFT calculator. Find the values everywhere for (a) decimation in time radix-2 IFFT X(0) = 43, X(1) = 6.071-j0.5858, X(2) = 5+j6, X(3) = -8.0711+j3.4142, X(4) = 7, X(5) = -8.0711-j3.4142, X(6) = 5-j6, X(7) = 6.0711+j0.5858 X(0) x(0) X1(0) X2(0) 1/8
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
31 X(4) X(2) X(6) X(1) X(5) X(3) X(7) 𝑊𝑊 8 −1 = 𝑒𝑒 𝑗𝑗 2𝜋𝜋 8 1 = 1 √2 + 𝑗𝑗 1 √2 = 0.7071 + 𝑗𝑗 0.7071 , 𝑊𝑊 8 −2 = 𝑒𝑒 𝑗𝑗 2𝜋𝜋 8 2 = 𝑗𝑗 𝑊𝑊 8 −3 = 𝑒𝑒 𝑗𝑗 2𝜋𝜋 8 3 = 1 2 + 𝑗𝑗 1 2 = 0.7071 + 𝑗𝑗 0.7071 X1(0)=X(0)+X(4)=50, X1(1)=X(0)-X(1)=36, X1(2)=X(2)+X(6)=10, X1(3)=(X(2)-X(6)) 𝑊𝑊 8 −2 =j12×j=-12, X1(4)=X(1)+X(5) =-2-j4, X1(5)=X(1)-X(5)=14.1421+j2.8284, X1(6)=X(3)+X(7)=-2+j4, X1(7)=(X(3)-X(7)) 𝑊𝑊 8 −2 =-2.8284-j14.1422 X2(0)=X1(0)+X1(2)=60, X2(1)=X1(1)+X1(3)=24, X2(2)=X1(0)-X1(2)=40, X2(3)=X1(1)-X1(3)=48, X2(4)=X1(4)+X1(6)=-4, X2(5)=(X1(5)+X1(7)) 𝑊𝑊 8 −1 =16 X2(6)=(X1(4)-X1(6)) 𝑊𝑊 8 −2 =8, X2(7)=(X1(5)-X1(7)) 𝑊𝑊 8 −3 =-24 x(0)=(X2(0)+X2(4))/8=7, x(1)=(X2(1)+X2(5))/8=5, x(2)=(X2(2)+X2(6))/8=6, x(3)=(X2(3)+X2(7))/8=3, x(4)=(X2(0)-X2(4))/8=8, x(5)=(X2(1)-X2(5))/8=1, x(6)=(X2(2)-X2(6))/8=4, x(7)=(X2(3)-X2(7))/8=9 (b) decimation in frequency radix-2 IFFT X(0) = 43, X(1) = 6.071-j0.5858, X(2) = 5+j6, X(3) = -8.0711+j3.4142, -1 -1 -1 -1 -1 -1 -1 -1 -1 2 W N 2 W N 1 W N -1 -1 2 W N 3 W N x(1) x(2) x(3) x(4) x(5) x(6) x(7) X1(1) X1(2) X1(3) X1(4) X1(5) X1(6) X1(7) X2(1) X2(2) X2(3) X2(4) X2(5) X2(6) X2(7) -1 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
32 X(4) = 7, X(5) = -8.0711-j3.4142, X(6) = 5-j6, X(7) = 6.0711+j0.5858 X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X1(0)=X(0)+X(4)=50, X1(1)= X(1)+X(5)=-2-j4, X1(2)= X(2)+X(6)=10, X1(3)= X(3)+X(7)=-2+j4, X1(4)=X(0)-X(4)=36, X1(5)= (X(1)-X(5)) 𝑊𝑊 8 −1 =8+j12, X1(6)= (X(2)-X(6)) 𝑊𝑊 8 −2 =-12, X1(7)= (X(3)-X(7)) 𝑊𝑊 8 −3 = 8-j12 X2(0)=X1(0)+X1(2)=60, X2(1)=X1(1)+X1(3)=-4, X2(2)=X1(0)-X1(2)=40, X2(3)=(X1(1)-X1(3)) 𝑊𝑊 8 −2 =8, X2(4)=X1(4)+X1(6)=24, X2(5)=X1(5)+X1(7)=16, X2(6)=X1(4)-X1(6)=48, X2(7)=(X1(5)-X1(7)) 𝑊𝑊 8 −2 =-24 x(0)=(X2(0)+X2(1))/8=7 x(4)=(X2(0)-X2(1))/8=8 x(2)=(X2(2)+X2(3))/8=6 x(6)=(X2(2)-X2(3))/8=4 x(1)=(X2(4)+X2(5))/8=5 x(5)=(X2(4)-X2(5))/8=1 x(3)=(X2(6)+X2(7))/8=3 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 W N 2 W N 1 W N -1 -1 2 W N 3 W N x(0) x(4) x(2) x(6) x(1) x(5) x(3) x(7) X 1 (0) X 1 (1) X 1 (2) X 1 (3) X 1 (4) X 1 (5) X 1 (6) X 1 (7) X 2 (0) X 2 (1) X 2 (2) X 2 (3) X 2 (4) X 2 (5) X 2 (6) X 2 (7) -1 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help
33 x(7)=(X2(6)-X2(7))/8=9 After the bit reverse order, we have x(0)=(X2(0)+X2(1))/8=7 x(1)=(X2(4)+X2(5))/8=5 x(2)=(X2(2)+X2(3))/8=6 x(3)=(X2(6)+X2(7))/8=3 x(4)=(X2(0)-X2(1))/8=8 x(5)=(X2(4)-X2(5))/8=1 x(6)=(X2(2)-X2(3))/8=4 x(7)=(X2(6)-X2(7))/8=9
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help