ECE3101HW13Sol
pdf
keyboard_arrow_up
School
California State University, Fullerton *
*We aren’t endorsed by this school
Course
3301
Subject
Electrical Engineering
Date
Jan 9, 2024
Type
Pages
33
Uploaded by CorporalPower10655
1
ECE 3101 HOMEWORK #13 Solutions © Dr. James Kang, Professor, ECE Department, Cal Poly Pomona 1. Find the discrete-time Fourier transform (DTFT), X(
θ
), and plot |X(
θ
)| and ∠
X(
θ
) for 0 ≤ θ
≤ π
for the following signals. Find X(z) from the z-transform table, and set z = e
j
θ
. (a) x(k) = (0.8)
k
u(k). X(
θ
) = 1/(1-0.8e
-j
θ
) (b) x(k) = (0.8)
|k|
. X(
θ
) = (1-0.8
2
)/[(1-0.8e
-j
θ
)(1-0.8e
j
θ
)] 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
1
2
3
4
5
6
θ
/
π
|X(
θ
)|
Magnitude
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-0.4
-0.3
-0.2
-0.1
0
θ
/
π
∠
X(
θ
)/
π
Phase
2
(c) x(k) = k(0.8)
k
u(k). X(
θ
) = 0.8e
-j
θ
/(1-0.8e
-j
θ
)
2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
2
4
6
8
10
θ
/
π
|X(
θ
)|
Magnitude
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-1
-0.5
0
0.5
1
θ
/
π
∠
X(
θ
)/
π
Phase
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
5
10
15
20
25
θ
/
π
|X(
θ
)|
Magnitude
3
(d) x(k) = k
2
(0.8)
k
u(k). X(
θ
) = (0.8e
-j
θ
+0.8
2
e
-j2
θ
)/(1-0.8e
-j
θ
)
3
2. Find the discrete-time Fourier transform (DTFT), X(
θ
), and plot |X(
θ
)| and ∠
X(
θ
) for 0 ≤ θ
≤ π
for the following signals. 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-1
-0.8
-0.6
-0.4
-0.2
0
θ
/
π
∠
X(
θ
)/
π
Phase
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
50
100
150
200
θ
/
π
|X(
θ
)|
Magnitude
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-1
-0.5
0
0.5
1
θ
/
π
∠
X(
θ
)/
π
Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
4
Find X(z) from the z-transform table, and set z = e
j
θ
. (a) x(k) = (0.8)
k
cos(
π
k/4) u(k). X(
θ
) = [1-
cos(π/4)0.8exp(
-j
θ
)]/[1-2cos(
π
/4)0.8exp(-j
θ
)+0.8
2
exp(-j2
θ
)] = [1-0.5657exp(-j
θ
)]/[1-1.1314exp(-j
θ
)+0.64exp(-j2
θ
)] (b) x(k) = (0.8)
k
sin(
π
k/4) u(k). X(
θ
) = [sin(π/4)0.8exp(
-j
θ
)]/[1-2cos(
π
/4)0.8exp(-j
θ
)+0.8
2
exp(-j2
θ
)] = [0.5657exp(-j
θ
)]/[1-1.1314exp(-j
θ
)+0.64exp(-j2
θ
)] 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
1
2
3
θ
/
π
|X(
θ
)|
Magnitude
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-0.4
-0.2
0
0.2
0.4
θ
/
π
∠
X(
θ
)/
π
Phase
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
1
2
3
θ
/
π
|X(
θ
)|
Magnitude
5
(c) x(k) = k (0.8)
k
cos(
π
k/4) u(k). X(
θ
) = [cos(π/4)0.8exp(
-j
θ
)-2
×
0.8
2
×
exp(-j2
θ
)+cos(
π
/4)
×
0.8
3
×
exp(-j3
θ
)]/[1-
2cos(
π
/4)0.8exp(-j
θ
)+0.8
2
exp(-j2
θ
)]
2 [0.5657exp(-j
θ
)-1.62
×
exp(-j2
θ
)+0.362
×
exp(-j3
θ
)]/[1-1.1314exp(-j
θ
)+0.64exp(-j2
θ
)]
2
(d) x(k) = k (0.8)
k
sin(
π
k/4) u(k). X(
θ
) = [sin
(π/4)0.8exp(
-j
θ
)-sin(
π
/4)
×
0.8
3
×
exp(-j3
θ
)]/[1-2cos(
π
/4)0.8exp(-j
θ
)+0.8
2
exp(-
j2
θ
)]
2 [0.5657exp(-j
θ
)-0.362
×
exp(-j3
θ
)]/[1-1.1314exp(-j
θ
)+0.64exp(-j2
θ
)]
2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-1
-0.5
0
θ
/
π
∠
X(
θ
)/
π
Phase
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
5
10
θ
/
π
|X(
θ
)|
Magnitude
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-1
-0.5
0
0.5
1
θ
/
π
∠
X(
θ
)/
π
Phase
6
3. Find the 8-point (N = 8) discrete Fourier transform (DFT), X(n), and plot |X(n)| and ∠
X(n) for 0 ≤ n ≤ 7 for the following signals.
(a) x(k) = (0.8)
k
[u(k) −
u(k
−
8)]. x(k) X(n) |X(n)| ∠
X(n) 1.0000 4.1611 4.1611 0 0.8000 0.7106 - 0.9256i 1.1669 -0.9160 0.6400 0.5075 - 0.4060i 0.6499 -0.6747 0.5120 0.4702 - 0.1699i 0.4999 -0.3467 0.4096 0.4623 - 0.0000i 0.4623 -0.0000 0.3277 0.4702 + 0.1699i 0.4999 0.3467 0.2621 0.5075 + 0.4060i 0.6499 0.6747 0.2097 0.7106 + 0.9256i 1.1669 0.9160 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0
5
10
15
θ
/
π
|X(
θ
)|
Magnitude
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-1
-0.5
0
0.5
1
θ
/
π
∠
X(
θ
)/
π
Phase
0
1
2
3
4
5
6
7
0
1
2
3
4
5
n
|X
n
|
Magnitude Response
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
7
(b) x(k) = k(0.8)
k
[u(k) −
u(k
−
8)]. x(k) X(n) |X(n)| ∠
X(n) 0 9.9337 9.9337 0 0.8000 -2.2793 + 0.8376i 2.4284 2.7894 1.2800 -1.2145 + 0.5656i 1.3397 2.7057 1.5360 -0.9975 + 0.2519i 1.0288 2.8942 1.6384 -0.9511 - 0.0000i 0.9511 -3.1416 1.6384 -0.9975 - 0.2519i 1.0288 -2.8942 1.5729 -1.2145 - 0.5656i 1.3397 -2.7057 1.4680 -2.2793 - 0.8376i 2.4284 -2.7894 (c) x(k) = k
2
(0.8)
k
[u(k) −
u(k
−
8)]. 0
1
2
3
4
5
6
7
-1
-0.5
0
0.5
1
n
∠
X
n
Phase Response
0
1
2
3
4
5
6
7
0
2
4
6
8
10
n
|X
n
|
Magnitude Response
0
1
2
3
4
5
6
7
-4
-2
0
2
4
n
∠
X
n
Phase Response
8
x(k) X(n) |X(n)| ∠
X(n) 0 42.4268 42.4268 0 0.8000 -7.7726 +16.1120i 17.8889 2.0203 2.5600 -5.4436 + 5.8920i 8.0218 2.3167 4.6080 -5.3346 + 2.3577i 5.8324 2.7254 6.5536 -5.3253 - 0.0000i 5.3253 -3.1416 8.1920 -5.3346 - 2.3577i 5.8324 -2.7254 9.4372 -5.4436 - 5.8920i 8.0218 -2.3167 10.2760 -7.7726 -16.1120i 17.8889 -2.0203 4. Find the 8-point (N = 8) discrete Fourier transform (DFT), X(n), and plot |X(n)| and ∠
X(n) for 0 ≤ n ≤ 7 for the following signals.
(a) x(k) = [1 1 1 1 1 1 1 1]. 𝑋𝑋
(
𝑛𝑛
) =
∑
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑁𝑁−1
𝑗𝑗=0
=
𝑒𝑒
−𝑗𝑗0𝑗𝑗
2𝜋𝜋
𝑁𝑁
+
𝑒𝑒
−𝑗𝑗1𝑗𝑗
2𝜋𝜋
𝑁𝑁
+
𝑒𝑒
−𝑗𝑗2𝑗𝑗
2𝜋𝜋
𝑁𝑁
+
𝑒𝑒
−𝑗𝑗3𝑗𝑗
2𝜋𝜋
𝑁𝑁
+
𝑒𝑒
−𝑗𝑗4𝑗𝑗
2𝜋𝜋
𝑁𝑁
+
𝑒𝑒
−𝑗𝑗5𝑗𝑗
2𝜋𝜋
𝑁𝑁
+
𝑒𝑒
−𝑗𝑗6𝑗𝑗
2𝜋𝜋
𝑁𝑁
+
𝑒𝑒
−𝑗𝑗7𝑗𝑗
2𝜋𝜋
𝑁𝑁
X(0) = 1+1+1+1+1+1+1+1 = 8 For n > 0, X(n) = 0. x(k) X(n) |X(n)| ∠
X(n) 1.0000 8.0000 8.0000 0 1.0000 -0.0000 + 0.0000i 0.0000 0 1.0000 -0.0000 - 0.0000i 0.0000 0 1.0000 -0.0000 + 0.0000i 0.0000 0 1.0000 0 - 0.0000i 0.0000 0 0
1
2
3
4
5
6
7
0
10
20
30
40
50
n
|X
n
|
Magnitude Response
0
1
2
3
4
5
6
7
-4
-2
0
2
4
n
∠
X
n
Phase Response
9
1.0000 -0.0000 - 0.0000i 0.0000 0 1.0000 -0.0000 - 0.0000i 0.0000 0 1.0000 0.0000 + 0.0000i 0.0000 0 ∠
X(n) = 0 (b) x(k) = [1 1 1 1 0 0 0 0]. 𝑋𝑋
(
𝑛𝑛
) =
� 𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑁𝑁−1
𝑗𝑗=0
=
𝑒𝑒
−𝑗𝑗0𝑗𝑗
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗1𝑗𝑗
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2𝑗𝑗
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗3𝑗𝑗
2𝜋𝜋
8
X(0) = 1 +
𝑒𝑒
−𝑗𝑗1
×
0
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
0
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗3
×
0
2𝜋𝜋
8
= 1 + 1 + 1 + 1 = 4
X(1) = 1 +
𝑒𝑒
−𝑗𝑗1
×
1
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
1
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗3
×
1
2𝜋𝜋
8
= 1 – j2.4142 = 2.6131e
-j1.1781 X(2) = 1 +
𝑒𝑒
−𝑗𝑗1
×
2
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
2
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗3
×
2
2𝜋𝜋
8
= 0 X(3) = 1 +
𝑒𝑒
−𝑗𝑗1
×
3
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
3
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗3
×
3
2𝜋𝜋
8
= 1 – j0.4142 = 1.0824e
-j0.3927
X(4) = 1 +
𝑒𝑒
−𝑗𝑗1
×
4
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
4
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗3
×
4
2𝜋𝜋
8
= 0 X(5) = 1 +
𝑒𝑒
−𝑗𝑗1
×
5
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
5
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗3
×
5
2𝜋𝜋
8
= 1 + j0.4142 = 1.0824e
j0.3927
X(6) = 1 +
𝑒𝑒
−𝑗𝑗1
×
6
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
6
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗3
×
6
2𝜋𝜋
8
= 0 X(7) = 1 +
𝑒𝑒
−𝑗𝑗1
×
7
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
7
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗3
×
7
2𝜋𝜋
8
= 1 + j2.4142 = 2.6131e
j1.1781
x(k) X(n) |X(n)| ∠
X(n) 1.0000 4.0000 4.0000 0 0
1
2
3
4
5
6
7
0
2
4
6
8
n
|X
n
|
Magnitude Response
0
1
2
3
4
5
6
7
-1
-0.5
0
0.5
1
n
∠
X
n
Phase Response
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
10 1.0000 1.0000 - 2.4142i 2.6131 -1.1781 1.0000 -0.0000 - 0.0000i 0.0000 0 1.0000 1.0000 - 0.4142i 1.0824 -0.3927 0 0 - 0.0000i 0.0000 0 0 1.0000 + 0.4142i 1.0824 0.3927 0 0.0000 - 0.0000i 0.0000 0 0 1.0000 + 2.4142i 2.6131 1.1781 (c) x(k) = [1 1 -1 -1 1 1 -1 -1]. 𝑋𝑋
(
𝑛𝑛
) =
� 𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑁𝑁−1
𝑗𝑗=0
=
𝑒𝑒
−𝑗𝑗0𝑗𝑗
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗1𝑗𝑗
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗2𝑗𝑗
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3𝑗𝑗
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4𝑗𝑗
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗5𝑗𝑗
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗6𝑗𝑗
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗7𝑗𝑗
2𝜋𝜋
8
X(0) = 1 +
𝑒𝑒
−𝑗𝑗1
×
0
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗2
×
0
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
0
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
0
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗5
×
0
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗6
×
0
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
0
2𝜋𝜋
8
= 0
X(1) = 1 +
𝑒𝑒
−𝑗𝑗1
×
1
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗2
×
1
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
1
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
1
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗5
×
1
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗6
×
1
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
1
2𝜋𝜋
8
= 0
X(2) = 1 +
𝑒𝑒
−𝑗𝑗1
×
2
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗2
×
2
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
2
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
2
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗5
×
2
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗6
×
2
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
2
2𝜋𝜋
8
= 4-j4 0
1
2
3
4
5
6
7
0
1
2
3
4
n
|X
n
|
Magnitude Response
0
1
2
3
4
5
6
7
-3
-2
-1
0
1
2
n
∠
X
n
Phase Response
11 X(3) = 1 +
𝑒𝑒
−𝑗𝑗1
×
3
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗2
×
3
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
3
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
3
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗5
×
3
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗6
×
3
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
3
2𝜋𝜋
8
= 0 X(4) = 1 +
𝑒𝑒
−𝑗𝑗1
×
4
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗2
×
4
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
4
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
4
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗5
×
4
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗6
×
4
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
4
2𝜋𝜋
8
= 0 X(5) = 1 +
𝑒𝑒
−𝑗𝑗1
×
5
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗2
×
5
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
5
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
5
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗5
×
5
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗6
×
5
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
5
2𝜋𝜋
8
= 0 X(6) = 1 +
𝑒𝑒
−𝑗𝑗1
×
6
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗2
×
6
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
6
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
6
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗5
×
6
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗6
×
6
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
6
2𝜋𝜋
8
= 4+j4 X(7) = 1 +
𝑒𝑒
−𝑗𝑗1
×
7
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗2
×
7
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
7
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
7
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗5
×
7
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗6
×
7
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
7
2𝜋𝜋
8
= 0 x(k) X(n) |X(n)| ∠
X(n) 1.0000 0 0 0 1.0000 0.0000 - 0.0000i 0.0000 0 -1.0000 4.0000 - 4.0000i 5.6569 -0.7854 -1.0000 -0.0000 + 0.0000i 0.0000 0 1.0000 0 0 0 1.0000 0.0000 - 0.0000i 0.0000 0 -1.0000 4.0000 + 4.0000i 5.6569 0.7854 -1.0000 -0.0000 - 0.0000i 0.0000 0 0
1
2
3
4
5
6
7
0
2
4
6
n
|X
n
|
Magnitude Response
12 (d) x(k) = [1 -1 1 -1 1 -1 1 -1]. 𝑋𝑋
(
𝑛𝑛
) =
� 𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑁𝑁−1
𝑗𝑗=0
=
𝑒𝑒
−𝑗𝑗0𝑗𝑗
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗1𝑗𝑗
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2𝑗𝑗
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3𝑗𝑗
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4𝑗𝑗
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗5𝑗𝑗
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗6𝑗𝑗
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗7𝑗𝑗
2𝜋𝜋
8
X(0) = 1
− 𝑒𝑒
−𝑗𝑗1
×
0
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
0
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
0
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
0
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗5
×
0
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗6
×
0
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
0
2𝜋𝜋
8
= 0
X(1) = 1
− 𝑒𝑒
−𝑗𝑗1
×
1
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
1
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
1
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
1
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗5
×
1
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗6
×
1
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
1
2𝜋𝜋
8
= 0
X(2) = 1
− 𝑒𝑒
−𝑗𝑗1
×
2
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
2
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
2
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
2
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗5
×
2
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗6
×
2
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
2
2𝜋𝜋
8
= 0 X(3) = 1
− 𝑒𝑒
−𝑗𝑗1
×
3
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
3
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
3
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
3
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗5
×
3
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗6
×
3
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
3
2𝜋𝜋
8
= 0 X(4) = 1
− 𝑒𝑒
−𝑗𝑗1
×
4
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
4
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
4
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
4
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗5
×
4
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗6
×
4
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
4
2𝜋𝜋
8
= 8 X(5) = 1
− 𝑒𝑒
−𝑗𝑗1
×
5
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
5
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
5
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
5
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗5
×
5
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗6
×
5
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
5
2𝜋𝜋
8
= 0 X(6) = 1
− 𝑒𝑒
−𝑗𝑗1
×
6
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
6
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
6
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
6
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗5
×
6
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗6
×
6
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
6
2𝜋𝜋
8
= 0 X(7) = 1
− 𝑒𝑒
−𝑗𝑗1
×
7
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗2
×
7
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗3
×
7
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗4
×
7
2𝜋𝜋
8
− 𝑒𝑒
−𝑗𝑗5
×
7
2𝜋𝜋
8
+
𝑒𝑒
−𝑗𝑗6
×
7
2𝜋𝜋
8
−
𝑒𝑒
−𝑗𝑗7
×
7
2𝜋𝜋
8
= 0 x(k) X(n) |X(n)| ∠
X(n) 1.0000 0 0 0 -1.0000 0.0000 - 0.0000i 0.0000 0 1.0000 0.0000 - 0.0000i 0.0000 0 -1.0000 0.0000 - 0.0000i 0.0000 0 0
1
2
3
4
5
6
7
-1
-0.5
0
0.5
1
n
∠
X
n
Phase Response
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
13 1.0000 8.0000 + 0.0000i 8.0000 0 -1.0000 -0.0000 + 0.0000i 0.0000 0 1.0000 0.0000 - 0.0000i 0.0000 0 -1.0000 -0.0000 - 0.0000i 0.0000 0 5. For the following periodic signals, find the coefficients d
n
of the discrete-time Fourier series representation, and plot |d
n
| and ∠
d
n
. 𝑑𝑑
𝑗𝑗
=
1
𝑁𝑁
�
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑗𝑗
1
+𝑁𝑁−1
𝑗𝑗=𝑗𝑗
1
, 0
≤ 𝑛𝑛 ≤ 𝑁𝑁 −
1
𝑥𝑥
(
𝑘𝑘
) =
� 𝑑𝑑
𝑗𝑗
𝑒𝑒
𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑁𝑁−1
𝑗𝑗=0
, 0
≤ 𝑘𝑘 ≤ 𝑁𝑁 −
1
(a) N = 10 0
1
2
3
4
5
6
7
0
2
4
6
8
n
|X
n
|
Magnitude Response
0
1
2
3
4
5
6
7
-1
-0.5
0
0.5
1
n
∠
X
n
Phase Response
14 𝑑𝑑
𝑗𝑗
=
1
𝑁𝑁
�
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑗𝑗
1
+𝑁𝑁−1
𝑗𝑗=𝑗𝑗
1
=
1
10
�
1
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
𝑗𝑗
2
𝑗𝑗=−2
=
1
10
�𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
−2
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
−1
)
+ 1 +
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
1
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
2
�
= 1
10
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛
2𝜋𝜋
10
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛
4𝜋𝜋
10
��
d
0
= 1
10
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
0
2𝜋𝜋
10
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
0
4𝜋𝜋
10
��
=5/10 = 0.5 d
1
= 1
10
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
1
2𝜋𝜋
10
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
1
4𝜋𝜋
10
��
= 0.3236 d
2
= 1
10
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
2
2𝜋𝜋
10
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
2
4𝜋𝜋
10
��
= 0 ….. x(k) d(n) |d(n)| ∠
d(n) 1.0000 0.5000 0.5000 0 1.0000 0.3236 + 0.0000i 0.3236 0 1.0000 -0.0000 - 0.0000i 0.0000 0 0 -0.1236 - 0.0000i 0.1236 -3.1416 0 0.0000 - 0.0000i 0.0000 0 0 0.1000 0.1000 0 0 0 - 0.0000i 0.0000 0 0 -0.1236 - 0.0000i 0.1236 -3.1416 1.0000 0.0000 - 0.0000i 0.0000 0 1.0000 0.3236 + 0.0000i 0.3236 0 -20
-15
-10
-5
0
5
10
15
20
0
0.2
0.4
0.6
0.8
1
0
1
2
3
4
5
6
7
8
9
0
0.2
0.4
0.6
0.8
n
|d
n
|
Magnitude
15 (b) 𝑑𝑑
𝑗𝑗
=
1
𝑁𝑁
�
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑗𝑗
1
+𝑁𝑁−1
𝑗𝑗=𝑗𝑗
1
=
1
10
�
1
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
𝑗𝑗
4
𝑗𝑗=0
=
1
10
�𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
0
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
1
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
2
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
3
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
4
)
�
=
1
10
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
2
)
�𝑒𝑒
𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
2
)
+
𝑒𝑒
𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
1
)
+ 1 +
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
1
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
2
)
�
= 𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
2
)
1
10
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛
2𝜋𝜋
10
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛
4𝜋𝜋
10
��
d
0
= 1
10
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
0
2𝜋𝜋
10
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
0
4𝜋𝜋
10
��
=5/10 = 0.5 d
1
= 𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
(
2
)
1
10
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
1
2𝜋𝜋
10
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
1
4𝜋𝜋
10
��
= 0.3236e
-j1.2655 d
2
= 1
10
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
2
2𝜋𝜋
10
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
2
4𝜋𝜋
10
��
= 0 ….. x(k) d(n) |d(n)| ∠
d(n) 1.0000 0.5000 0.5000 0 1.0000 0.1000 - 0.3078i 0.3236 -1.2566 1.0000 -0.0000 - 0.0000i 0.0000 0 1.0000 0.1000 - 0.0727i 0.1236 -0.6283 1.0000 0.0000 - 0.0000i 0.0000 0 0 0.1000 + 0.0000i 0.1000 0 0 0.0000 - 0.0000i 0.0000 0 0 0.1000 + 0.0727i 0.1236 0.6283 0 0.0000 - 0.0000i 0.0000 0 0
1
2
3
4
5
6
7
8
9
-4
-3
-2
-1
0
n
∠
d
n
Phase
-20
-15
-10
-5
0
5
10
15
20
0
0.2
0.4
0.6
0.8
1
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
16 0 0.1000 + 0.3078i 0.3236 1.2566 (c) N = 12. 𝑑𝑑
𝑗𝑗
=
1
𝑁𝑁
�
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑗𝑗
1
+𝑁𝑁−1
𝑗𝑗=𝑗𝑗
1
=
1
12
�
1
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
𝑗𝑗
3
𝑗𝑗=−3
=
1
12
�𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
−3
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
−2
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
−1
)
+ 1 +
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
1
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
2
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
3
�
= 1
12
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛
2𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛
4𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛
6𝜋𝜋
12
��
d
0
= 1
12
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
0
2𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
0
4𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
0
6𝜋𝜋
12
��
=7/12 = 0.5833 d
1
= 1
12
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
1
2𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
1
4𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
1
6𝜋𝜋
12
��
= 0.110 0
1
2
3
4
5
6
7
8
9
0
0.2
0.4
0.6
0.8
n
|d
n
|
Magnitude
0
1
2
3
4
5
6
7
8
9
-2
-1
0
1
2
n
∠
d
n
Phase
-20
-15
-10
-5
0
5
10
15
20
0
0.2
0.4
0.6
0.8
1
17 d
2
= 1
12
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
2
2𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
2
4𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
2
6𝜋𝜋
12
��
= -0.0833 ….. x(k) d(n) |d(n)| ∠
d(n) 1.0000 0.5833 0.5833 0 1.0000 0.3110 + 0.0000i 0.3110 0 1.0000 -0.0833 + 0.0000i 0.0833 3.1416 1.0000 -0.0833 - 0.0000i 0.0833 -3.1416 0 0.0833 - 0.0000i 0.0833 0 0 0.0223 + 0.0000i 0.0223 0 0 -0.0833 + 0.0000i 0.0833 3.1416 0 0.0223 - 0.0000i 0.0223 0 0 0.0833 - 0.0000i 0.0833 0 1.0000 -0.0833 + 0.0000i 0.0833 3.1416 1.0000 -0.0833 - 0.0000i 0.0833 -3.1416 1.0000 0.3110 + 0.0000i 0.3110 0 (d) N = 12 0
2
4
6
8
10
12
0
0.2
0.4
0.6
0.8
n
|d
n
|
Magnitude
0
2
4
6
8
10
12
-4
-2
0
2
4
n
∠
d
n
Phase
18 𝑑𝑑
𝑗𝑗
=
1
𝑁𝑁
�
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑗𝑗
1
+𝑁𝑁−1
𝑗𝑗=𝑗𝑗
1
=
1
12
�
1
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
12
𝑗𝑗
6
𝑗𝑗=0
=
1
12
�𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
0
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
1
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
2
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
3
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
4
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
5
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
6
)
�
=
1
12
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
3
)
�𝑒𝑒
𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
3
)
+
𝑒𝑒
𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
2
)
+
𝑒𝑒
𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
1
)
+ 1 +
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
1
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
2
)
+
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
3
)
�
= 𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
(
3
)
1
12
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛
2𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛
4𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �𝑛𝑛
6𝜋𝜋
12
��
d
0
= 1
12
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
0
2𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
0
4𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
0
6𝜋𝜋
12
��
=7/12 = 0.5833 d
1
= 𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
12
(
3
)
1
12
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
1
2𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
1
4𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
1
6𝜋𝜋
12
��
= -0.3110
d
2
= 𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
12
(
3
)
1
12
�
1 + 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
2
2𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
2
4𝜋𝜋
12
�
+ 2
𝑐𝑐𝑐𝑐𝑐𝑐 �
2
6𝜋𝜋
12
��
= 0.0833 ….. x(k) d(n) |d(n)| ∠
d(n) 1.0000 0.5833 0.5833 0 1.0000 0.0000 - 0.3110i 0.3110 -1.5708 1.0000 0.0833 + 0.0000i 0.0833 0 1.0000 0.0000 - 0.0833i 0.0833 -1.5708 1.0000 0.0833 - 0.0000i 0.0833 0 1.0000 0.0000 - 0.0223i 0.0223 -1.5708 1.0000 0.0833 - 0.0000i 0.0833 0 0 0.0000 + 0.0223i 0.0223 1.5708 0 0.0833 + 0.0000i 0.0833 0 0 0.0000 + 0.0833i 0.0833 1.5708 0 0.0833 + 0.0000i 0.0833 0 0 -0.0000 + 0.3110i 0.3110 1.5708 -20
-15
-10
-5
0
5
10
15
20
0
0.2
0.4
0.6
0.8
1
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
19 6. For the following periodic signals, find the coefficients d
n
of the discrete-time Fourier series representation, and plot |d
n
| and ∠
d
n
. (a) N = 5. 𝑑𝑑
𝑗𝑗
=
1
𝑁𝑁
�
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑗𝑗
1
+𝑁𝑁−1
𝑗𝑗=𝑗𝑗
1
=
1
5
�
0
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
12
0
+ 1
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
12
1
+ 2
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
12
2
+ 3
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
12
3
+ 4
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
12
4
�
d
0
= 1
5
�
0
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
5
0
+ 1
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
5
1
+ 2
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
5
2
+ 3
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
5
3
+ 4
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
5
4
�
=
1
5
(0 + 1 + 2 + 3 +
4) = 2
0
2
4
6
8
10
12
0
0.2
0.4
0.6
0.8
n
|d
n
|
Magnitude
0
2
4
6
8
10
12
-2
-1
0
1
2
n
∠
d
n
Phase
-10
-8
-6
-4
-2
0
2
4
6
8
10
0
1
2
3
4
5
20 d
1
= 1
5
�
0
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
5
0
+ 1
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
5
1
+ 2
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
5
2
+ 3
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
5
3
+ 4
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
5
4
�
= -0.5+j0.6882
d
2
= 1
5
�
0
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
5
0
+ 1
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
5
1
+ 2
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
5
2
+ 3
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
5
3
+ 4
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
5
4
�
= -0.5+j0.1625 ….. x(k) d(n) |d(n)| ∠
d(n) 0 2.0000 2.0000 0 1.0000 -0.5000 + 0.6882i 0.8507 2.1991 2.0000 -0.5000 + 0.1625i 0.5257 2.8274 3.0000 -0.5000 - 0.1625i 0.5257 -2.8274 4.0000 -0.5000 - 0.6882i 0.8507 -2.1991 (b) N = 10. 0
0.5
1
1.5
2
2.5
3
3.5
4
0
0.5
1
1.5
2
n
|d
n
|
Magnitude
0
0.5
1
1.5
2
2.5
3
3.5
4
-4
-2
0
2
4
n
∠
d
n
Phase
-20
-15
-10
-5
0
5
10
15
20
0
1
2
3
4
5
21 𝑑𝑑
𝑗𝑗
=
1
𝑁𝑁
�
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑗𝑗
1
+𝑁𝑁−1
𝑗𝑗=𝑗𝑗
1
=
1
10
�
0
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
4
�
d
0
= 1
10
�
0
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
4
�
=
1
10
(0 + 1 + 2 + 3 +
4) = 1
d
1
= 1
10
�
0
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
4
�
= -0.2736-j0.7694
d
2
= 1
10
�
0
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
4
�
= -0.25+j0.3441 ….. x(k) d(n) |d(n)| ∠
d(n) 0 1.0000 1.0000 0 1.0000 -0.2736 - 0.7694i 0.8166 -1.9125 2.0000 -0.2500 + 0.3441i 0.4253 2.1991 3.0000 0.1736 - 0.1816i 0.2513 -0.8080 4.0000 -0.2500 + 0.0812i 0.2629 2.8274 0 0.2000 + 0.0000i 0.2000 0 0 -0.2500 - 0.0812i 0.2629 -2.8274 0 0.1736 + 0.1816i 0.2513 0.8080 0 -0.2500 - 0.3441i 0.4253 -2.1991 0 -0.2736 + 0.7694i 0.8166 1.9125 7. For the following periodic signals, find the coefficients d
n
of the discrete-time Fourier series representation, and plot |d
n
| and ∠
d
n
. 0
1
2
3
4
5
6
7
8
9
0
0.2
0.4
0.6
0.8
1
n
|d
n
|
Magnitude
0
1
2
3
4
5
6
7
8
9
-4
-2
0
2
4
n
∠
d
n
Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
22 (a) Period = N = 10, one period of x(k) for 0 ≤ k ≤ 9 is given by
𝑥𝑥
(
𝑘𝑘
) = (0.8)
𝑗𝑗
, 0
≤ 𝑘𝑘 ≤
9
𝑑𝑑
𝑗𝑗
=
1
𝑁𝑁
�
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑗𝑗
1
+𝑁𝑁−1
𝑗𝑗=𝑗𝑗
1
=
1
10
�
1
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
0
+ 0.8
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
1
+ 0. 8
2
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
2
+
. . . . .
+0. 8
9
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
9
�
d
0
= 1
10
�
1
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
0
+ 0.8
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
1
+ 0. 8
2
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
2
+
. . . . .
+0. 8
9
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
9
�
=
1
10
1−0
.
8
10
1−0
.
8
=
0.4463
d
1
= 1
10
�
1
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
0
+ 0.8
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
1
+ 0. 8
2
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
2
+
. . . . .
+0. 8
9
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
9
�
= 0.0911-j0.1215
d
2
= 1
10
�
1
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
0
+ 0.8
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
1
+ 0. 8
2
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
2
+
. . . . .
+0. 8
9
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
9
�
= 0.0587-j0.0593 ….. x(k) d(n) |d(n)| ∠
d(n) 1.0000 0.4463 0.4463 0 0.8000 0.0911 - 0.1215i 0.1518 -0.9271 0.6400 0.0587 - 0.0593i 0.0834 -0.7907 0.5120 0.0522 - 0.0318i 0.0611 -0.5478 0.4096 0.0501 - 0.0143i 0.0521 -0.2781 0.3277 0.0496 - 0.0000i 0.0496 0 0.2621 0.0501 + 0.0143i 0.0521 0.2781 0.2097 0.0522 + 0.0318i 0.0611 0.5478 0.1678 0.0587 + 0.0593i 0.0834 0.7907 0.1342 0.0911 + 0.1215i 0.1518 0.9271 0
1
2
3
4
5
6
7
8
9
0
0.1
0.2
0.3
0.4
0.5
n
|d
n
|
Magnitude
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
23 (b) Period = N = 10, one period of x(k) for 0 ≤ k ≤ 9 is given by
𝑥𝑥
(
𝑘𝑘
) =
𝑘𝑘
(0.8)
𝑗𝑗
, 0
≤ 𝑘𝑘 ≤
9
𝑑𝑑
𝑗𝑗
=
1
𝑁𝑁
�
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑗𝑗
1
+𝑁𝑁−1
𝑗𝑗=𝑗𝑗
1
=
1
10
�
0
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
0
+ 0.8
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
1
+ 2 × 0. 8
2
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
2
+
. . . . .
+9 × 0. 8
9
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
9
�
d
0
= 1
10
�
0
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
0
+ 0.8
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
1
+ 2 × 0. 8
2
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
2
+
. . . . .
+9 × 0. 8
9
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
9
�
= 1.2484 d
1
= 1
10
�
0
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
0
+ 0.8
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
1
+ 2 × 0. 8
2
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
2
+
. . . . .
+9 × 0. 8
9
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
9
�
= -
0.2730+j0.0196
d
2
= 1
10
�
0
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
0
+ 0.8
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
1
+ 2 × 0. 8
2
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
2
+
. . . . .
+9 × 0. 8
9
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
9
�
= -
0.13+j0.0527 ….. x(k) d(n) |d(n)| ∠
d(n) 0 1.2484 1.2484 0 0.8000 -0.2730 + 0.0196i 0.2737 3.0700 1.2800 -0.1300 + 0.0527i 0.1403 2.7567 1.5360 -0.0958 + 0.0329i 0.1013 2.8106 1.6384 -0.0845 + 0.0155i 0.0859 2.9608 1.6384 -0.0817 - 0.0000i 0.0817 -3.1416 1.5729 -0.0845 - 0.0155i 0.0859 -2.9608 1.4680 -0.0958 - 0.0329i 0.1013 -2.8106 1.3422 -0.1300 - 0.0527i 0.1403 -2.7567 1.2080 -0.2730 - 0.0196i 0.2737 -3.0700 0
1
2
3
4
5
6
7
8
9
-1
-0.5
0
0.5
1
n
∠
d
n
Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
24 8. For the following periodic signals, find the coefficients d
n
of the discrete-time Fourier series representation, and plot |d
n
| and ∠
d
n
. (a) Period = N = 10, one period of x(k) f
or 0 ≤ k ≤ 9 is given by
𝑥𝑥
(
𝑘𝑘
) =
�
𝑘𝑘
, 0
≤ 𝑘𝑘 ≤
4
5,5
≤ 𝑘𝑘 ≤
9
𝑑𝑑
𝑗𝑗
=
1
𝑁𝑁
�
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑗𝑗
1
+𝑁𝑁−1
𝑗𝑗=𝑗𝑗
1
=
1
10
�
0
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
4
+ 5
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
5
+ 5
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
6
+5
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
7
+ 5
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
8
+ 5
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
9
�
d
0
= 1
10
�
0
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
4
+ 5
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
5
+ 5
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
6
+5
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
7
+ 5
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
8
+ 5
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
9
�
=(0+1+2+3+4+5+5+5+5+5)/10=35/10=3.5 d
1
=
1
10
�
0
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
4
+ 5
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
5
+ 5
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
6
+5
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
7
+ 5
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
8
+ 5
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
9
�
0
1
2
3
4
5
6
7
8
9
0
0.2
0.4
0.6
0.8
1
1.2
1.4
n
|d
n
|
Magnitude
0
1
2
3
4
5
6
7
8
9
-4
-2
0
2
4
n
∠
d
n
Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
25 = -0.7736+j0.7694 d
2
=
1
10
�
0
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
4
+ 5
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
5
+ 5
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
6
+5
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
7
+ 5
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
8
+ 5
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
9
�
= -0.25+j0.3441 ….. x(k) d(n) |d(n)| ∠
d(n) 0 3.5000 3.5000 0 1.0000 -0.7736 + 0.7694i 1.0911 2.3589 2.0000 -0.2500 + 0.3441i 0.4253 2.1991 3.0000 -0.3264 + 0.1816i 0.3735 2.6338 4.0000 -0.2500 + 0.0812i 0.2629 2.8274 5.0000 -0.3000 - 0.0000i 0.3000 -3.1416 5.0000 -0.2500 - 0.0812i 0.2629 -2.8274 5.0000 -0.3264 - 0.1816i 0.3735 -2.6338 5.0000 -0.2500 - 0.3441i 0.4253 -2.1991 5.0000 -0.7736 - 0.7694i 1.0911 -2.3589 0
1
2
3
4
5
6
7
8
9
0
0.5
1
1.5
2
2.5
3
3.5
n
|d
n
|
Magnitude
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
26 (b) Period = N = 10, one period of x(k) for 0 ≤ k ≤ 9 is given by
𝑥𝑥
(
𝑘𝑘
) =
�
𝑘𝑘
, 0
≤ 𝑘𝑘 ≤
3
4,4
≤ 𝑘𝑘 ≤
6
10
− 𝑘𝑘
, 7
≤ 𝑘𝑘 ≤
9
𝑑𝑑
𝑗𝑗
=
1
𝑁𝑁
�
𝑥𝑥
(
𝑘𝑘
)
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
𝑁𝑁
𝑗𝑗
𝑗𝑗
1
+𝑁𝑁−1
𝑗𝑗=𝑗𝑗
1
=
1
10
�
0
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
4
+ 4
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
5
+ 4
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
6
+3
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
7
+ 2
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
8
+ 1
𝑒𝑒
−𝑗𝑗𝑗𝑗
2𝜋𝜋
10
9
�
d
0
= 1
10
�
0
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
4
+ 4
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
5
+ 4
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
6
+3
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
7
+ 2
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
8
+ 1
𝑒𝑒
−𝑗𝑗0
2𝜋𝜋
10
9
�
= 2.4 d
1
= 1
10
�
0
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
4
+ 4
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
5
+ 4
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
6
+3
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
7
+ 2
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
8
+ 1
𝑒𝑒
−𝑗𝑗1
2𝜋𝜋
10
9
�
= -
0.9472
d
2
= 1
10
�
0
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
0
+ 1
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
1
+ 2
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
2
+ 3
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
3
+ 4
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
4
+ 4
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
5
+ 4
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
6
+3
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
7
+ 2
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
8
+ 1
𝑒𝑒
−𝑗𝑗2
2𝜋𝜋
10
9
�
= -
0.1 ….. x(k) d(n) |d(n)| ∠
d(n) 0 2.4000 2.4000 0 1.0000 -0.9472 - 0.0000i 0.9472 -3.1416 0
1
2
3
4
5
6
7
8
9
-4
-3
-2
-1
0
1
2
3
n
∠
d
n
Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
27 2.0000 -0.1000 - 0.0000i 0.1000 -3.1416 3.0000 -0.0528 - 0.0000i 0.0528 -3.1416 4.0000 -0.1000 - 0.0000i 0.1000 -3.1416 4.0000 -0.0000 + 0.0000i 0.0000 0 4.0000 -0.1000 0.1000 3.1416 3.0000 -0.0528 + 0.0000i 0.0528 3.1416 2.0000 -0.1000 - 0.0000i 0.1000 -3.1416 1.0000 -0.9472 - 0.0000i 0.9472 -3.1416 9. Let the input data be x(k) = [1 3 2 5 9 6 7 4 ]
t
. This data is applied to 8-point (N = 8) radix-
2 FFT calculator. Find the values everywhere for
(a) decimation in time radix-2 FFT x(0) = 1, x(1) = 3, x(2) = 2, x(3) = 5, x(4) = 9, x(5) = 6, x(6) = 7, x(7) = 4 0
1
2
3
4
5
6
7
8
9
0
0.5
1
1.5
2
2.5
n
|d
n
|
Magnitude
0
1
2
3
4
5
6
7
8
9
-4
-2
0
2
4
n
∠
d
n
Phase
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
28 x(0) x(4) x(2) x(6) x(1) x(5) x(3) x(7) 𝑊𝑊
8
1
=
𝑒𝑒
−𝑗𝑗
2𝜋𝜋
8
1
=
1
√2
− 𝑗𝑗
1
√2
= 0.7071
− 𝑗𝑗
0.7071
, 𝑊𝑊
8
2
=
𝑒𝑒
−𝑗𝑗
2𝜋𝜋
8
2
=
−𝑗𝑗
𝑊𝑊
8
3
=
𝑒𝑒
−𝑗𝑗
2𝜋𝜋
8
3
=
−
1
√
2
− 𝑗𝑗
1
√
2
=
−
0.7071
− 𝑗𝑗
0.7071
B
it reversed order:
x(0) = 1, x(4) = 9 , x(2) = 2, x(6) = 7, x(1) = 3, x(5) = 6, x(3) = 5 , x(7) = 4 X1(0) =x(0)+x(4)=10, X1(1) = x(0)-x(4)=-8, X1(2) =x(2)+x(6)=9, X1(3) = (x(2)-x(6))
𝑊𝑊
8
2
= j5, X1(4) =x(1)+x(5)=9, X1(5) =x(1)-x(5)= -3, X1(6) =x(3)+x(7)= 9, X1(7) = (x(3)-x(7)) 𝑊𝑊
8
2
= -j. X2(0)=X1(0)+X1(2)=19, X2(1)=X1(1)+X1(3)=-8+j5, X2(2)=X1(0)-X1(2)=1, X2(3)=X1(1)-X1(3)=-8-j5,X2(4)=X1(4)+X1(6)=18, X2(5)=(X1(5)+X1(7)) 𝑊𝑊
8
1
=-
2.8284+j1.4142, X2(6)=(X1(4)-X1(6))
𝑊𝑊
8
2
=0, X2(7)=(X1(5)-X1(7))
𝑊𝑊
8
3
=2.8284+j1.4142 X(0)=X2(0)+X2(4) =19+18=37 X(1)=X2(1)+X2(5)=(-8+j5)+( -2.8284+j1.4142)= -10.8284 + j6.4142 -1 -1 -1 -1 -1 -1 -1 -1 -1 2
W
N
2
W
N
1
W
N
-1 -1 2
W
N
3
W
N
X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X1(0) X1(1) X1(2) X1(3) X1(4) X1(5) X1(6) X1(7) X2(0) X2(1) X2(2) X2(3) X2(4) X2(5) X2(6) X2(7) -1
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
29 X(2)=X2(2)+X2(6)=(1)+( 0)= 1 X(3)=X2(3)+X2(7)= (-8+j5)+( -2.8284+j1.4142)= -5.1716 - j3.5858 X(4)=X2(0)-X2(4)=(19)-( 18)= 1 X(5)=X2(1)-X2(5)=(-8+j5)-( -2.8284+j1.4142)= -5.1716 + j3.5858 X(6)=X2(2)-X2(6)=(1)-( 0)= 1 X(7)=X2(3)-X2(7)= (-8+j5)-( -2.8284+j1.4142)= -10.8284 - j6.4142 (b) decimation in frequency radix-2 FFT x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(0) = 1, x(1) = 3, x(2) = 2, x(3) = 5, x(4) = 9, x(5) = 6, x(6) = 7, x(7) = 4 X1(0) =x(0)+x(4)=10, X1(1) =x(1)+x(5)=9, X1(2) =x(2)+x(6)=9, X1(3)=x(3)+x(7)=9, X1(4)=x(0)-x(4)=-8, X1(5)=(x(1)-x(5))
𝑊𝑊
8
1
= -2.1213+j2.1213, X1(6)=(x(2)-x(6))
𝑊𝑊
8
2
= j5, X1(7) = (x(3)-x(7)) 𝑊𝑊
8
3
= -0.7071-j0.7071 X2(0)=X1(0)+X1(2)=19, X2(1)=X1(1)+X1(3)=18, X2(2)= X1(0)-X1(2)=1, X2(3)= (X1(1)-X1(3))
𝑊𝑊
8
2
=0 X2(4)=X1(4)+X1(6)=-8+j5, X2(5)=X1(5)+X1(7) =-2.8284+j1.4142, -1 -1 -1 -1 -1 -1 -1 -1 -1 2
W
N
2
W
N
1
W
N
-1 -1 2
W
N
3
W
N
X(0) X(4) X(2) X(6) X(1) X(5) X(3) X(7) X
1
(0) X
1
(1) X
1
(2) X
1
(3) X
1
(4) X
1
(5) X
1
(6) X
1
(7) X
2
(0) X
2
(1) X
2
(2) X
2
(3) X
2
(4) X
2
(5) X
2
(6) X
2
(7) -1
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
30 X2(6)=X1(4)-X1(6)=-8-j5, X2(7)=(X1(5)-X1(7))
𝑊𝑊
8
2
=2.8284+j1.4142 X(0)=X2(0)+X2(1) =19+18=37 X(4)=X2(0)-X2(1)=(19)-( 18)= 1 X(2)=X2(2)+X2(3)=(1)+( 0)= 1 X(6)=X2(2)-X2(3)=(1)-( 0)= 1 X(1)=X2(4)+X2(5)=(-8+j5)+( -2.8284+j1.4142)= -10.8284 + j6.4142 X(5)=X2(4)-X2(5)=(-8+j5)-( -2.8284+j1.4142)= -5.1716 + j3.5858 X(3)=X2(6)+X2(7)= (-8+j5)+( -2.8284+j1.4142)= -5.1716 - j3.5858 X(7)=X2(6)-X2(7)= (-8+j5)-( -2.8284+j1.4142)= -10.8284 - j6.4142 Applying bit reverse order, we get
X(0)=X2(0)+X2(1) =19+18=37 X(1)=X2(4)+X2(5)=(-8+j5)+( -2.8284+j1.4142)= -10.8284 + j6.4142 X(2)=X2(2)+X2(3)=(1)+( 0)= 1 X(3)=X2(6)+X2(7)= (-8+j5)+( -2.8284+j1.4142)= -5.1716 - j3.5858 X(4)=X2(0)-X2(1)=(19)-( 18)= 1 X(5)=X2(4)-X2(5)=(-8+j5)-( -2.8284+j1.4142)= -5.1716 + j3.5858 X(6)=X2(2)-X2(3)=(1)-( 0)= 1 X(7)=X2(6)-X2(7)= (-8+j5)-( -2.8284+j1.4142)= -10.8284 - j6.4142 37.0000 -10.8284 + 6.4142i 1.0000 -5.1716 - 3.5858i 1.0000 -5.1716 + 3.5858i 1.0000 -10.8284 - 6.4142i 10. Let the transform X(n) be 43.0000 6.0711 - 0.5858i 5.0000 + 6.0000i -8.0711 + 3.4142i 7.0000 -8.0711 - 3.4142i 5.0000 - 6.0000i 6.0711 + 0.5858i This data is applied to 8-point (N = 8) radix-
2 IFFT calculator. Find the values everywhere for
(a) decimation in time radix-2 IFFT X(0) = 43, X(1) = 6.071-j0.5858, X(2) = 5+j6, X(3) = -8.0711+j3.4142, X(4) = 7, X(5) = -8.0711-j3.4142, X(6) = 5-j6, X(7) = 6.0711+j0.5858 X(0) x(0) X1(0) X2(0) 1/8
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
31 X(4) X(2) X(6) X(1) X(5) X(3) X(7) 𝑊𝑊
8
−1
=
𝑒𝑒
𝑗𝑗
2𝜋𝜋
8
1
=
1
√2
+
𝑗𝑗
1
√2
= 0.7071 +
𝑗𝑗
0.7071
, 𝑊𝑊
8
−2
=
𝑒𝑒
𝑗𝑗
2𝜋𝜋
8
2
=
𝑗𝑗
𝑊𝑊
8
−3
=
𝑒𝑒
𝑗𝑗
2𝜋𝜋
8
3
=
−
1
√
2
+
𝑗𝑗
1
√
2
=
−
0.7071 +
𝑗𝑗
0.7071
X1(0)=X(0)+X(4)=50, X1(1)=X(0)-X(1)=36, X1(2)=X(2)+X(6)=10, X1(3)=(X(2)-X(6)) 𝑊𝑊
8
−2
=j12×j=-12, X1(4)=X(1)+X(5) =-2-j4, X1(5)=X(1)-X(5)=14.1421+j2.8284, X1(6)=X(3)+X(7)=-2+j4, X1(7)=(X(3)-X(7)) 𝑊𝑊
8
−2
=-2.8284-j14.1422 X2(0)=X1(0)+X1(2)=60, X2(1)=X1(1)+X1(3)=24, X2(2)=X1(0)-X1(2)=40, X2(3)=X1(1)-X1(3)=48, X2(4)=X1(4)+X1(6)=-4, X2(5)=(X1(5)+X1(7)) 𝑊𝑊
8
−1
=16 X2(6)=(X1(4)-X1(6)) 𝑊𝑊
8
−2
=8, X2(7)=(X1(5)-X1(7)) 𝑊𝑊
8
−3
=-24 x(0)=(X2(0)+X2(4))/8=7, x(1)=(X2(1)+X2(5))/8=5, x(2)=(X2(2)+X2(6))/8=6, x(3)=(X2(3)+X2(7))/8=3, x(4)=(X2(0)-X2(4))/8=8, x(5)=(X2(1)-X2(5))/8=1, x(6)=(X2(2)-X2(6))/8=4, x(7)=(X2(3)-X2(7))/8=9 (b) decimation in frequency radix-2 IFFT X(0) = 43, X(1) = 6.071-j0.5858, X(2) = 5+j6, X(3) = -8.0711+j3.4142, -1 -1 -1 -1 -1 -1 -1 -1 -1 2
W
N
−
2
W
N
−
1
W
N
−
-1 -1 2
W
N
−
3
W
N
−
x(1) x(2) x(3) x(4) x(5) x(6) x(7) X1(1) X1(2) X1(3) X1(4) X1(5) X1(6) X1(7) X2(1) X2(2) X2(3) X2(4) X2(5) X2(6) X2(7) -1 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
32 X(4) = 7, X(5) = -8.0711-j3.4142, X(6) = 5-j6, X(7) = 6.0711+j0.5858 X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X1(0)=X(0)+X(4)=50, X1(1)= X(1)+X(5)=-2-j4, X1(2)= X(2)+X(6)=10, X1(3)= X(3)+X(7)=-2+j4, X1(4)=X(0)-X(4)=36, X1(5)= (X(1)-X(5)) 𝑊𝑊
8
−1
=8+j12, X1(6)= (X(2)-X(6)) 𝑊𝑊
8
−2
=-12, X1(7)= (X(3)-X(7)) 𝑊𝑊
8
−3
= 8-j12 X2(0)=X1(0)+X1(2)=60, X2(1)=X1(1)+X1(3)=-4, X2(2)=X1(0)-X1(2)=40, X2(3)=(X1(1)-X1(3)) 𝑊𝑊
8
−2
=8, X2(4)=X1(4)+X1(6)=24, X2(5)=X1(5)+X1(7)=16, X2(6)=X1(4)-X1(6)=48, X2(7)=(X1(5)-X1(7)) 𝑊𝑊
8
−2
=-24 x(0)=(X2(0)+X2(1))/8=7 x(4)=(X2(0)-X2(1))/8=8 x(2)=(X2(2)+X2(3))/8=6 x(6)=(X2(2)-X2(3))/8=4 x(1)=(X2(4)+X2(5))/8=5 x(5)=(X2(4)-X2(5))/8=1 x(3)=(X2(6)+X2(7))/8=3 -1 -1 -1 -1 -1 -1 -1 -1 -1 2
W
N
−
2
W
N
−
1
W
N
−
-1 -1 2
W
N
−
3
W
N
−
x(0) x(4) x(2) x(6) x(1) x(5) x(3) x(7) X
1
(0) X
1
(1) X
1
(2) X
1
(3) X
1
(4) X
1
(5) X
1
(6) X
1
(7) X
2
(0) X
2
(1) X
2
(2) X
2
(3) X
2
(4) X
2
(5) X
2
(6) X
2
(7) -1 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
33 x(7)=(X2(6)-X2(7))/8=9 After the bit reverse order, we have
x(0)=(X2(0)+X2(1))/8=7 x(1)=(X2(4)+X2(5))/8=5 x(2)=(X2(2)+X2(3))/8=6 x(3)=(X2(6)+X2(7))/8=3 x(4)=(X2(0)-X2(1))/8=8 x(5)=(X2(4)-X2(5))/8=1 x(6)=(X2(2)-X2(3))/8=4 x(7)=(X2(6)-X2(7))/8=9
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Documents
Related Questions
I don't understand how this is the answer? I am confused on how to find the phase of this fourier transform..
arrow_forward
Help me fast with detail explanation.
Definitely I will give Upvote.
arrow_forward
1. What is the connection between Fourier series and Fourier transform? What are the main difference of scope and limitations? How the Fourier series did became Fourier transform? Include your own words explanation and mathematical equations.
arrow_forward
Thank you, I now need part b, the zero state response, redone with Fourier Transform approach.
To reiterate, this is an additional part of the textbook example, not a graded assignment, please do not reject, thank you.
arrow_forward
- Explain the Fourier Transform Principle ?
- What is the Fourier Transform ? A visual introduction .
please answer both thank you .
arrow_forward
2.47 The Fourier transform of a signal is shown in Figure P-2.47. Determine
and sketch the Fourier transform of the signal x1 (1) = -x(1) +x(t) cos(3000rt) +
2x(t) cos (5000rt).
500
500
Figure P-2.47
arrow_forward
I need help with part A only!
arrow_forward
The Fourier Transform for a signal f(t) is shown in Figure Q2. Sketch the Fourier
j3t
Transform of new signal ef(t). Briefly discuss the process involved in the
transformation.
中一
2
-2
3
-4
arrow_forward
please do part a and b. Part b is in MATLAB code.
Some Information:
To make rectagular pulse:
1) use unit step
2) RectangularPulse() - symbolic version
3) rectpuls()
Applying Fourier Transform
fourier() - symbolic
fft() recommended, needs data points, not an equation
fftshift()
arrow_forward
Find the fourier transform of signals shown figure below
4
2
(a)
(b)
arrow_forward
Prove the following continuous time Foirier transform relationship.
1.
2.
arrow_forward
I need the answer as soon as possible
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Related Questions
- I don't understand how this is the answer? I am confused on how to find the phase of this fourier transform..arrow_forwardHelp me fast with detail explanation. Definitely I will give Upvote.arrow_forward1. What is the connection between Fourier series and Fourier transform? What are the main difference of scope and limitations? How the Fourier series did became Fourier transform? Include your own words explanation and mathematical equations.arrow_forward
- Thank you, I now need part b, the zero state response, redone with Fourier Transform approach. To reiterate, this is an additional part of the textbook example, not a graded assignment, please do not reject, thank you.arrow_forward- Explain the Fourier Transform Principle ? - What is the Fourier Transform ? A visual introduction . please answer both thank you .arrow_forward2.47 The Fourier transform of a signal is shown in Figure P-2.47. Determine and sketch the Fourier transform of the signal x1 (1) = -x(1) +x(t) cos(3000rt) + 2x(t) cos (5000rt). 500 500 Figure P-2.47arrow_forward
- I need help with part A only!arrow_forwardThe Fourier Transform for a signal f(t) is shown in Figure Q2. Sketch the Fourier j3t Transform of new signal ef(t). Briefly discuss the process involved in the transformation. 中一 2 -2 3 -4arrow_forwardplease do part a and b. Part b is in MATLAB code. Some Information: To make rectagular pulse: 1) use unit step 2) RectangularPulse() - symbolic version 3) rectpuls() Applying Fourier Transform fourier() - symbolic fft() recommended, needs data points, not an equation fftshift()arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,