Solutions for Numerical Analysis
Problem 1ES:
Approximate the following integrals using the Trapezoidal rule. a. 0.51x4dx b. 00.52x4dx c....Problem 2ES:
Approximate the following integrals using the Trapezoidal rule. a. 0.250.25(cosx)2dx b....Problem 3ES:
Find a bound for the error in Exercise 1 using the error formula and compare this to the actual...Problem 5ES:
Repeat Exercise 1 using Simpsons rule. 1. Approximate the following integrals using the Trapezoidal...Problem 13ES:
The Trapezoidal rule applied to 02f(x)dx gives the value 4, and Simpsons rule gives the value 2....Problem 15ES:
Approximate the following integrals using formulas (4.25) through (4.32). Are the accuracies of the...Problem 18ES:
Suppose that the data of Exercise 17 have round-off errors given by the following table. Calculate...Problem 21ES:
The quadrature formula 11f(x)dx=c0f(1)+c1f(0)+c2f(1) is exact for all polynomials of degree less...Problem 22ES:
The quadrature formula 02f(x)dx=c0f(0)+c1f(1)+c2f(2) is exact for all polynomials of degree less...Problem 23ES:
Find the constants c0, c1, and x1 so that the quadrature formula 01f(x)dx=c0f(0)+c1f(x1) has the...Problem 24ES:
Find the constants x0, x1, and c1 so that the quadrature formula 01f(x)dx=12f(x0)+c1f(x1) has the...Browse All Chapters of This Textbook
Chapter 1.1 - Review Of CalculusChapter 1.2 - Round-off Errors And Computer ArithmeticChapter 1.3 - Algorithms And ConvergenceChapter 2.1 - The Bisection MethodChapter 2.2 - Fixed-point IterationChapter 2.3 - Newton’s Method And Its ExtensionsChapter 2.4 - Error Analysis For Iterative MethodsChapter 2.5 - Accelerating ConvergenceChapter 3.1 - Interpolation And The Lagrange PolynomialChapter 3.2 - Data Approximation And Neville’s Method
Chapter 3.3 - Divided DifferencesChapter 3.4 - Hermite InterpolationChapter 3.5 - Cubic Spline InterpolationChapter 3.6 - Parametric CurvesChapter 4.1 - Numerical DifferentiationChapter 4.2 - Richardson’s ExtrapolationChapter 4.3 - Elements Of Numerical IntegrationChapter 4.4 - Composite Numerical IntegrationChapter 4.5 - Romberg IntegrationChapter 4.6 - Adaptive Quadrature MethodsChapter 4.7 - Gaussian QuadratureChapter 4.8 - Multiple IntegralsChapter 4.9 - Improper IntegralsChapter 5.3 - Higher-order Taylor MethodsChapter 11.3 - Finite-difference Methods For Linear Problems
Book Details
This well-respected book introduces readers to the theory and application of modern numerical approximation techniques. Providing an accessible treatment that only requires a calculus prerequisite, the authors explain how, why, and when approximation techniques can be expected to work - and why, in some situations, they fail. A wealth of examples and exercises develop readers' intuition, and demonstrate the subject's practical applications to important everyday problems in math, computing, engineering, and physical science disciplines. Three decades after it was first published, Burden, Faires, and Burden's Numerical Analyses remains the definitive introduction to a vital and practical subject.
More Editions of This Book
Corresponding editions of this textbook are also available below:
EBK NUMERICAL ANALYSIS
9th Edition
ISBN: 9780100440487
EBK NUMERICAL ANALYSIS
9th Edition
ISBN: 9781133169338
Numerical Analysis
9th Edition
ISBN: 9780538733519
Numerical Analysis
8th Edition
ISBN: 9780534392000
Numerical Analysis 9th Edition
9th Edition
ISBN: 9780538735643
Analisis Numerico/ Numerical Analysis (spanish Edition)
7th Edition
ISBN: 9789706861344
Numerical Analysis
10th Edition
ISBN: 9781305730663
Numerical Analysis
10th Edition
ISBN: 9781305253674
EBK NUMERICAL ANALYSIS
10th Edition
ISBN: 9781305465350
EBK NUMERICAL ANALYSIS
10th Edition
ISBN: 9780100546301
EBK NUMERICAL ANALYSIS
10th Edition
ISBN: 8220100546303
Related Math Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.