Concept explainers
The meaning of quantum realm and to point out the five major ideas coming from laws of

Answer to Problem 1EAP
Solution:
Quantum realm is the length of the scales where
Five major ideas coming from laws of quantum mechanics are:
- Atoms are made of quarks and leptons
- Antimatter is real
- Presence of the basic forces between the particles
- Wave particle duality
- Astronomical consequences.
Explanation of Solution
Introduction:
Quantum mechanics is the branch of physics that deals with the phenomenon at the nano scopic level and was introduced by De-Broglie. The scale under which the quantum mechanical effects are studied is known as quantum realm. There are many processes that are explained under this scale. For example, electron tunnelling, double slit experiment, molecular electronics, organic semiconductors etc originate from this scale and become prominent.
Quantum realm is the lengths of the scales where angular momentum is not considered as continuous quantity and its quantization must also be accounted for. These terms are used when we deal in microscopic level and we cannot ignore the tunnelling effect, wave- particle duality that has its significant effects i.e. quantum mechanical effects.
Five major ideas coming from laws of quantum mechanics are:
- We all know that matter is something which is composed of small particles known as atoms. And in our nature we have the existence of two particles that are fermions and bosons. Fermions are two types of atoms i.e. leptons are quarks. Bosons are the particles which are associated with light which is made of photons.
- For every particle there is also the existence of an antiparticle. These antiparticles are the constituents of the antimatter which can be easily prepared in a laboratory. Whenever a particle and the antiparticle meet, there is the production of a lot of energy.
- There are four fundamental forces in nature i.e. the strong force, the weak force, gravitational force and the
electromagnetic force which are seen when interaction between particles take place. - Wave particle duality, the wave and particle are not different from each other.
- Though quantum realm is studied under small scale but its effects have astronomical significance. Some phenomenon’s like Pauli’s exclusion principle, tunnelling etc. have the impact on the life, structure and energy production in the star.
Conclusion:
Thus, quantum realm is the lengths of the scales where angular momentum is not considered as a continuous quantity and its quantization must also be accounted for.
Five major ideas coming from laws of quantum mechanics are:
- Atoms are made of quarks and leptons
- Antimatter is real
- Presence of the basic forces between the particles
- Wave particle duality
- Astronomical consequences.
Want to see more full solutions like this?
Chapter S4 Solutions
EP COSMIC PERSPECTIVE-MOD.MASTERING
- Three identical capacitors are connected in parallel. When this parallel assembly of capacitors is connected to a 12 volt battery, a total of 3.1 x 10-5 coulombs flows through the battery. What is the capacitance of one individual capacitor? (Give your answer as the number of Farads.)arrow_forwardSuppose you construct your own capacitor by placing two parallel plates at a distance 0.27 meters apart. The plates each have a surface area of 0.64 square meters. What is the capacitance of this setup? (Give your answer as the number of Farads.)arrow_forwardDraw a diagram with the new arrows. No they do not point all towards the center.arrow_forward
- Example In Canada, the Earth has B = 0.5 mŢ, pointing north, 70.0° below the horizontal. a) Find the magnetic force on an oxygen ion (O2) moving due east at 250 m/s b) Compare the |FB| to |FE| due to Earth's fair- weather electric field (150 V/m downward).arrow_forwardFour charges, qa, qb, qa, and qd are fixed at the corners of a square. A charge q that is free to move located at the exact center of the square. Classify the scenarios described according to the force that would be exerted on the center charge q. Assume in each case that q is a positive charge. Do not assume that the fixed charges have equal magnitudes unless the scenario defines such an equality. qa Яс q %b Force is zero Force is to the left Force is to the right Force is undeterminedarrow_forwardCharge qi = -q is located at position (0, d). Charge q = −2q₁ is located at position (d,0). Charge q3 = located at position (2d, 2d). 5qi is y Determine the net electric field Ĕ net at the origin. Enter your expression using ij unit vector notation in terms of the given quantities, the permittivity of free space €0, and exact rational and irrational numbers. d 9₁ d TH net = 92 d d Xarrow_forward
- solve pleasearrow_forward= = R4 R5 = 12.5 Q. A - In the circuit shown, R₁ = R₂ = R 3 voltmeter measures the potential difference across the battery. When the switch is in position 1, the voltmeter measures V₁ = 13.8 V. When the switch is in position 2, the voltmeter measures V2 = 13.4 V. What is the emf ☐ of the battery? 14.93 = What is the battery's internal resistance r? r = V CH Ω R₁₂ V S R₁ 02 2 R₁ 4 R3 R 5arrow_forwardConsider the arrangement of charges shown in the figure. Four charges of equal magnitude Q but varying sign are placed at the corners of a square as indicated. A positive charge q is placed in the center. What is the direction of the net force, if any, on the center charge? Indicate your answer by placing the appropriate label in the first box. Then, suppose that the charge q were to be displaced slightly from the center position. On the figure, label each box with the arrow that best indicates the direction of the net force that would act on q if it were moved to that location. Net Force Answer Bank no force ↑ +2 0 -Q -Q +Qarrow_forward
- Don't use ai to answer I will report you answerarrow_forwardWhen an electromagnetic wave is reflected at normal incidence on a perfectly conducting surface, the electric fieldvector of the reflected wave at the reflecting surface is the negative of that of the incident wave.a) Explain why this should be so.b) Show that the superposition of the incident and reflected waves results in a standing wave.c) What is the relationship between the magnetic field vector of the incident and reflected waves at the reflectingsurface?arrow_forwardSuppose there are two transformers between your house and the high-voltage transmission line that distributes the power. In addition, assume your house is the only one using electric power. At a substation the primary of a step-down transformer (turns ratio = 1:23) receives the voltage from the high-voltage transmission line. Because of your usage, a current of 51.1 mA exists in the primary of the transformer. The secondary is connected to the primary of another step- down transformer (turns ratio = 1:36) somewhere near your house, perhaps up on a telephone pole. The secondary of this transformer delivers a 240-V emf to your house. How much power is your house using? Remember that the current and voltage given in this problem are rms values.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





