Concept explainers
Racing a Light Beam II. Following his humiliation in the first race against the light beam (Problem 56), Jo went into hiding for the next 2 years. By that time, most people had forgotten about both him and the money they had wasted on the pay-per-view event. However, Jo was secretly in training during this time. He worked out hard and tested new performance-enhancing substances. One day, he emerged from hiding and called another press conference. “I’m ready for a rematch,” he announced. Sponsors were few this time and spectators scarce in the huge Olympic stadium where Jo and the flashlight lined up at the starting line. But those who were there will never forget what they saw, although it all happened very quickly. Jo blasted out of the starting block at 99.9% of the
- As seen by spectators in the grandstand, how much faster than Jo is the light beam?
- As seen by Jo, how much faster is the light beam than he is? Explain your answer clearly.
- Using your results from parts a and b, explain why Jo can say that he was beaten just as badly as before, while the spectators can think he gave the light beam a good race.
- Although Jo was disappointed by his performance against the light beam, he did experience one pleasant surprise: The 100-meter course seemed short to him. In Jo’s reference frame during the race, how long was the 100-meter course?
Want to see the full answer?
Check out a sample textbook solutionChapter S2 Solutions
The Cosmic Perspective (9th Edition)
- Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forwardPhys 22arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill