
Concept explainers
Racing a Light Beam II. Following his humiliation in the first race against the light beam (Problem 56), Jo went into hiding for the next 2 years. By that time, most people had forgotten about both him and the money they had wasted on the pay-per-view event. However, Jo was secretly in training during this time. He worked out hard and tested new performance-enhancing substances. One day, he emerged from hiding and called another press conference. “I’m ready for a rematch,” he announced. Sponsors were few this time and spectators scarce in the huge Olympic stadium where Jo and the flashlight lined up at the starting line. But those who were there will never forget what they saw, although it all happened very quickly. Jo blasted out of the starting block at 99.9% of the
- As seen by spectators in the grandstand, how much faster than Jo is the light beam?
- As seen by Jo, how much faster is the light beam than he is? Explain your answer clearly.
- Using your results from parts a and b, explain why Jo can say that he was beaten just as badly as before, while the spectators can think he gave the light beam a good race.
- Although Jo was disappointed by his performance against the light beam, he did experience one pleasant surprise: The 100-meter course seemed short to him. In Jo’s reference frame during the race, how long was the 100-meter course?

Want to see the full answer?
Check out a sample textbook solution
Chapter S2 Solutions
The Cosmic Perspective (9th Edition)
- RT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forwardганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





