The correct word or phrase to fill in the blank.
Answer to Problem 1PE
a. Opposites
b.
c. Base, n
d. Radical, square
e. Negative, positive
f. Positive, negative
g.
h.
i. 0
Explanation of Solution
a.
The opposite numbers are the numbers which differ in sign and are at an equal distance from 0. Therefore, the given statement can be completed as “Two numbers that are the same distance from 0 but on opposite sides of 0 on the number line, are called opposites.”
b.
The absolute value of a real number is denoted by writing the number within two vertical bars (“|” mark) and it is the distance between 0 and that number. So, the given statement can be completed as “The absolute value of a real number, a, is denoted by
c.
Exponential numbers are written as
Therefore, the given statement can be completed as “Given the expression
d.
The square root of a number x is represented by
Therefore, the given incomplete statement can be completed as “The symbol
e.
The sum of two negative numbers is negative and product of two negative numbers is a positive number. So, the statement can be completed as “If a and b are both negative, then
f.
The addition of two numbers of opposite signs are either positive or negative depending on the sign of the number with higher absolute value. For example, the addition of
If
g.
Subtracting a number from another number is same as adding the opposite of the first number. And, addition of two numbers of opposite signs are either positive or negative depending on the sign of the number with higher absolute value.
The expression
h.
The reciprocal numbers are the numbers whose product is equal to 1. And the reciprocal of a given number can be written by the number in the denominator over 1.
So, the statement can be completed as “If a is a nonzero real number, then the reciprocal of a is
i.
Any number multiplied to 0 gives the result 0. So, in the product
j.
If 0 is divided by any nonzero number the quotient is always 0. But, if a nonzero number is divided by 0, the quotient is undefined because the division by 0 is not defined. So, the statement can be completed as “If
Want to see more full solutions like this?
Chapter R3 Solutions
INTERM ALGEBRA LL + ALEKS 360
- Q.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forwardListen ANALYZING RELATIONSHIPS Describe the x-values for which (a) f is increasing or decreasing, (b) f(x) > 0 and (c) f(x) <0. y Af -2 1 2 4x a. The function is increasing when and decreasing whenarrow_forwardBy forming the augmented matrix corresponding to this system of equations and usingGaussian elimination, find the values of t and u that imply the system:(i) is inconsistent.(ii) has infinitely many solutions.(iii) has a unique solutiona=2 b=1arrow_forwardif a=2 and b=1 1) Calculate 49(B-1)2+7B−1AT+7ATB−1+(AT)2 2)Find a matrix C such that (B − 2C)-1=A 3) Find a non-diagonal matrix E ̸= B such that det(AB) = det(AE)arrow_forwardWrite the equation line shown on the graph in slope, intercept form.arrow_forward1.2.15. (!) Let W be a closed walk of length at least 1 that does not contain a cycle. Prove that some edge of W repeats immediately (once in each direction).arrow_forward1.2.18. (!) Let G be the graph whose vertex set is the set of k-tuples with elements in (0, 1), with x adjacent to y if x and y differ in exactly two positions. Determine the number of components of G.arrow_forward1.2.17. (!) Let G,, be the graph whose vertices are the permutations of (1,..., n}, with two permutations a₁, ..., a,, and b₁, ..., b, adjacent if they differ by interchanging a pair of adjacent entries (G3 shown below). Prove that G,, is connected. 132 123 213 312 321 231arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forward1.2.20. (!) Let u be a cut-vertex of a simple graph G. Prove that G - v is connected. עarrow_forward1.2.12. (-) Convert the proof at 1.2.32 to an procedure for finding an Eulerian circuit in a connected even graph.arrow_forward1.2.16. Let e be an edge appearing an odd number of times in a closed walk W. Prove that W contains the edges of a cycle through c.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education