Under selected conditions, a sedan gets 22 mpg in city driving and 32 mpg for highway driving. The model G = 1 22 c + 1 32 h represents the amount of gasoline used (in gal) for c miles driven in the city and h miles driven on the highway. Determine the amount of gas required to drive 220 mi in the city and 512 mi on the highway.
Under selected conditions, a sedan gets 22 mpg in city driving and 32 mpg for highway driving. The model G = 1 22 c + 1 32 h represents the amount of gasoline used (in gal) for c miles driven in the city and h miles driven on the highway. Determine the amount of gas required to drive 220 mi in the city and 512 mi on the highway.
Solution Summary: The author calculates the amount of gas required to drive 220mi in a city and 512
Under selected conditions, a sedan gets 22 mpg in city driving and 32 mpg for highway driving. The model
G
=
1
22
c
+
1
32
h
represents the amount of gasoline used (in gal) for c miles driven in the city and h miles driven on the highway. Determine the amount of gas required to drive 220 mi in the city and 512 mi on the highway.
Given lim x-4 f (x) = 1,limx-49 (x) = 10, and lim→-4 h (x) = -7 use the limit properties
to find lim→-4
1
[2h (x) — h(x) + 7 f(x)] :
-
h(x)+7f(x)
3
O DNE
17. Suppose we know that the graph below is the graph of a solution to dy/dt = f(t).
(a) How much of the slope field can
you sketch from this information?
[Hint: Note that the differential
equation depends only on t.]
(b) What can you say about the solu-
tion with y(0) = 2? (For example,
can you sketch the graph of this so-
lution?)
y(0) = 1
y
AN
(b) Find the (instantaneous) rate of change of y at x = 5.
In the previous part, we found the average rate of change for several intervals of decreasing size starting at x = 5. The instantaneous rate of
change of fat x = 5 is the limit of the average rate of change over the interval [x, x + h] as h approaches 0. This is given by the derivative in the
following limit.
lim
h→0
-
f(x + h) − f(x)
h
The first step to find this limit is to compute f(x + h). Recall that this means replacing the input variable x with the expression x + h in the rule
defining f.
f(x + h) = (x + h)² - 5(x+ h)
=
2xh+h2_
x² + 2xh + h² 5✔
-
5
)x - 5h
Step 4
-
The second step for finding the derivative of fat x is to find the difference f(x + h) − f(x).
-
f(x + h) f(x) =
= (x²
x² + 2xh + h² -
])-
=
2x
+ h² - 5h
])x-5h) - (x² - 5x)
=
]) (2x + h - 5)
Macbook Pro
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY