
Calculus
10th Edition
ISBN: 9781285057095
Author: Ron Larson, Bruce H. Edwards
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter P.1, Problem 68E
Modeling Data
The table shows the numbers of cellular phone subscribers (in millions) in the United States for selected years.
(Source: CTIA-The Wireless)
Year | 1995 | 1998 | 2001 | 2004 | 2007 | 2010 |
Number | 34 | 69 | 128 | 182 | 255 | 303 |
(a) Use the regression capabilities of a graphing utility to find a mathematical model of the form y = at2 + bt + c for the data. In the model, y represents the number of subscribers (in millions) and t represents the year, with t = 5 corresponding to 1995.
(b) Use a graphing utility to plot the data and graph the model. Compare the data with the model.
(c) Use the model to predict the number of cellular phone subscribers in the United States in the year 2020.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter P Solutions
Calculus
Ch. P.1 - Matching In Exercises 3-6, match the equation with...Ch. P.1 - Matching In Exercises 3-6, match the equation with...Ch. P.1 - Matching In Exercises 3-6, match the equation with...Ch. P.1 - Matching In Exercises 3-6, match the equation with...Ch. P.1 - Prob. 5ECh. P.1 - Sketching a Graph by Point Plotting In Exercises...Ch. P.1 - Sketching a Graph by Point Plotting In Exercises...Ch. P.1 - Prob. 8ECh. P.1 - Sketching a Graph by Point Plotting In Exercises...Ch. P.1 - Sketching a Graph by Point Plotting In Exercises...
Ch. P.1 - Sketching a Graph by Point Plotting In Exercises...Ch. P.1 - Prob. 12ECh. P.1 - Prob. 13ECh. P.1 - Prob. 14ECh. P.1 - Approximating Solution Points Using Technology In...Ch. P.1 - Approximating Solution Points Using Technology In...Ch. P.1 - Finding Intercepts In Exercises 19-28, find any...Ch. P.1 - Finding Intercepts In Exercises 19-28, find any...Ch. P.1 - Finding Intercepts In Exercises 19-28, find any...Ch. P.1 - Prob. 20ECh. P.1 - Finding Intercepts In Exercises 19-28, find any...Ch. P.1 - Finding Intercepts In Exercises 19-28, find any...Ch. P.1 - Finding Intercepts In Exercises 19-28, find any...Ch. P.1 - Finding Intercepts In Exercises 19-28, find any...Ch. P.1 - Finding Intercepts In Exercises 19-28, find any...Ch. P.1 - Finding Intercepts In Exercises 19-28, find any...Ch. P.1 - Prob. 27ECh. P.1 - Prob. 28ECh. P.1 - Prob. 29ECh. P.1 - Prob. 30ECh. P.1 - Prob. 31ECh. P.1 - Prob. 32ECh. P.1 - Prob. 33ECh. P.1 - Prob. 34ECh. P.1 - Prob. 35ECh. P.1 - Prob. 36ECh. P.1 - Prob. 37ECh. P.1 - Prob. 38ECh. P.1 - Prob. 39ECh. P.1 - Prob. 40ECh. P.1 - Prob. 41ECh. P.1 - Prob. 42ECh. P.1 - Using Intercepts and Symmetry to Sketch a Graph In...Ch. P.1 - Prob. 44ECh. P.1 - Using Intercepts and Symmetry to Sketch a Graph In...Ch. P.1 - Prob. 46ECh. P.1 - Prob. 47ECh. P.1 - Prob. 48ECh. P.1 - Using Intercepts and Symmetry to Sketch a Graph In...Ch. P.1 - Using Intercepts and Symmetry to Sketch a Graph In...Ch. P.1 - Prob. 51ECh. P.1 - Using Intercepts and Symmetry to Sketch a Graph In...Ch. P.1 - Prob. 53ECh. P.1 - Using Intercepts and Symmetry to Sketch a Graph In...Ch. P.1 - Using Intercepts and Symmetry to Sketch a Graph In...Ch. P.1 - Prob. 56ECh. P.1 - Finding Points of Intersection In Exercises 57-62....Ch. P.1 - Finding Points of Intersection In Exercises 57-62....Ch. P.1 - Prob. 59ECh. P.1 - Finding Points of Intersection In Exercises 57-62,...Ch. P.1 - Prob. 61ECh. P.1 - Finding Points of Intersection In Exercises 57-62....Ch. P.1 - Finding Points of Intersection Using Technology In...Ch. P.1 - Prob. 64ECh. P.1 - Prob. 65ECh. P.1 - Finding Points of Intersection Using Technology In...Ch. P.1 - Modeling Data The table shows the Gross Domestic...Ch. P.1 - Modeling Data The table shows the numbers of...Ch. P.1 - Break-Even Point Find the sales necessary to break...Ch. P.1 - Copper Wire The resistance y in ohms of 1000 feet...Ch. P.1 - Using Solution Points For what values of k does...Ch. P.1 - Using Solution Points For what values of k does...Ch. P.1 - WRITING ABOUT CONCEPTS Writing Equations In...Ch. P.1 - EXPLORING CONCEPTS Using Intercepts Write an...Ch. P.1 - Prob. 75ECh. P.1 - HOW DO YOU SEE IT? Use the graphs of the two...Ch. P.1 - True or False ? In Exercises 75-78, determine...Ch. P.1 - Prob. 78ECh. P.1 - True or False? In Exercises 75-78, determine...Ch. P.1 - True or False? In Exercises 75-78, determine...Ch. P.2 - Estimating Slope In Exercises 36, estimate the...Ch. P.2 - Prob. 2ECh. P.2 - Prob. 3ECh. P.2 - Prob. 4ECh. P.2 - Prob. 5ECh. P.2 - Prob. 6ECh. P.2 - Finding the Slope of a Line In Exercises 7-12,...Ch. P.2 - Finding the Slope of a Line In Exercises 7-12,...Ch. P.2 - Finding the Slope of a Line In Exercises 7-12,...Ch. P.2 - Finding the Slope of a Line In Exercises 7-12,...Ch. P.2 - Sketching Lines In Exercises 13 and 14. sketch the...Ch. P.2 - Sketching Lines In Exercises 13 and 14, sketch the...Ch. P.2 - Prob. 13ECh. P.2 - Finding Points on a Line In Exercises 1518, use...Ch. P.2 - Prob. 15ECh. P.2 - Finding Points on a Line In Exercises 1518, use...Ch. P.2 - Finding an Equation of a Line In Exercises 19-24,...Ch. P.2 - Prob. 18ECh. P.2 - Prob. 19ECh. P.2 - Prob. 20ECh. P.2 - Prob. 21ECh. P.2 - Prob. 22ECh. P.2 - Prob. 23ECh. P.2 - Modeling Data The table shows the populations y...Ch. P.2 - Prob. 25ECh. P.2 - Finding the Slope and y-Intercept In Exercises...Ch. P.2 - Prob. 27ECh. P.2 - Prob. 28ECh. P.2 - Prob. 29ECh. P.2 - Prob. 30ECh. P.2 - Sketching a Line in the Plane In Exercises 35-42,...Ch. P.2 - Prob. 32ECh. P.2 - Prob. 33ECh. P.2 - Prob. 34ECh. P.2 - Prob. 35ECh. P.2 - Prob. 36ECh. P.2 - Prob. 37ECh. P.2 - Prob. 38ECh. P.2 - Prob. 39ECh. P.2 - Prob. 40ECh. P.2 - Prob. 41ECh. P.2 - Prob. 42ECh. P.2 - Prob. 43ECh. P.2 - Prob. 44ECh. P.2 - Prob. 45ECh. P.2 - Finding an Equation of a Line In Exercises 3946,...Ch. P.2 - Find an equation of the vertical line with...Ch. P.2 - Prob. 48ECh. P.2 - Writing an Equation in General Form In Exercises...Ch. P.2 - Prob. 50ECh. P.2 - Prob. 51ECh. P.2 - Prob. 52ECh. P.2 - Writing an Equation in General Form In Exercises...Ch. P.2 - Prob. 54ECh. P.2 - Finding Parallel and Perpendicular Lines In...Ch. P.2 - Finding Parallel and Perpendicular Lines In...Ch. P.2 - Finding Parallel and Perpendicular Lines In...Ch. P.2 - Finding Parallel and Perpendicular Lines In...Ch. P.2 - Finding Parallel and Perpendicular Lines In...Ch. P.2 - Finding Parallel and Perpendicular Lines In...Ch. P.2 - Finding Parallel and Perpendicular Lines In...Ch. P.2 - Prob. 62ECh. P.2 - Prob. 63ECh. P.2 - Prob. 64ECh. P.2 - Prob. 65ECh. P.2 - Prob. 66ECh. P.2 - Prob. 67ECh. P.2 - Prob. 68ECh. P.2 - Prob. 69ECh. P.2 - Prob. 70ECh. P.2 - Prob. 71ECh. P.2 - Prob. 72ECh. P.2 - Analyzing a Line A line is represented by the...Ch. P.2 - Tangent Line Find an equation of the line tangent...Ch. P.2 - Prob. 82ECh. P.2 - Prob. 74ECh. P.2 - Prob. 75ECh. P.2 - Reimbursed Expenses A company reimburses its sales...Ch. P.2 - Prob. 77ECh. P.2 - Straight-Line Depreciation A small business...Ch. P.2 - Apartment Rental A real estate office manages an...Ch. P.2 - Prob. 80ECh. P.2 - Prob. 83ECh. P.2 - Prob. 84ECh. P.2 - Prob. 85ECh. P.2 - Prob. 86ECh. P.2 - Prob. 87ECh. P.2 - Prob. 88ECh. P.2 - Prob. 89ECh. P.2 - Prob. 90ECh. P.2 - Prob. 91ECh. P.2 - Prob. 92ECh. P.2 - Prob. 93ECh. P.2 - Prob. 94ECh. P.2 - True or False? In Exercises 85 and 86, determine...Ch. P.2 - Prob. 96ECh. P.3 - Evaluating a Function In Exercises 110, evaluate...Ch. P.3 - Prob. 2ECh. P.3 - Prob. 3ECh. P.3 - Prob. 4ECh. P.3 - Evaluating a Function In Exercises 1-10, evaluate...Ch. P.3 - Prob. 6ECh. P.3 - Prob. 7ECh. P.3 - Prob. 8ECh. P.3 - Prob. 9ECh. P.3 - Prob. 10ECh. P.3 - Prob. 11ECh. P.3 - Prob. 12ECh. P.3 - Prob. 13ECh. P.3 - Finding the Domain and Range of a Function In...Ch. P.3 - Prob. 15ECh. P.3 - Finding the Domain and Range of a Function In...Ch. P.3 - Finding the Domain and Range of a Function In...Ch. P.3 - Prob. 18ECh. P.3 - Prob. 19ECh. P.3 - Finding the Domain and Range of a Function In...Ch. P.3 - Prob. 21ECh. P.3 - Prob. 22ECh. P.3 - Prob. 23ECh. P.3 - Prob. 24ECh. P.3 - Prob. 25ECh. P.3 - Prob. 26ECh. P.3 - Prob. 27ECh. P.3 - Prob. 28ECh. P.3 - Prob. 29ECh. P.3 - Prob. 30ECh. P.3 - Prob. 31ECh. P.3 - Prob. 32ECh. P.3 - Prob. 33ECh. P.3 - Prob. 34ECh. P.3 - Prob. 35ECh. P.3 - Prob. 36ECh. P.3 - Prob. 37ECh. P.3 - Prob. 38ECh. P.3 - Prob. 39ECh. P.3 - Prob. 40ECh. P.3 - Prob. 41ECh. P.3 - Sketching a Graph A student who commutes 27 miles...Ch. P.3 - Prob. 43ECh. P.3 - Using the Vertical Line Test In Exercises 39-42,...Ch. P.3 - Prob. 45ECh. P.3 - Prob. 46ECh. P.3 - Prob. 47ECh. P.3 - Prob. 48ECh. P.3 - Prob. 49ECh. P.3 - Prob. 50ECh. P.3 - Prob. 51ECh. P.3 - Prob. 52ECh. P.3 - Prob. 53ECh. P.3 - Prob. 54ECh. P.3 - Prob. 55ECh. P.3 - Matching In Exercises 51-56, use the graph of...Ch. P.3 - Prob. 57ECh. P.3 - Prob. 58ECh. P.3 - Prob. 59ECh. P.3 - Prob. 60ECh. P.3 - Sketching Transformations Use the graph of f shown...Ch. P.3 - Sketching Transformations Use the graph of f shown...Ch. P.3 - Prob. 63ECh. P.3 - Prob. 64ECh. P.3 - Prob. 65ECh. P.3 - Prob. 66ECh. P.3 - Finding Composite Functions In Exercises 63-66,...Ch. P.3 - Prob. 68ECh. P.3 - Prob. 69ECh. P.3 - Prob. 70ECh. P.3 - Evaluating Composite Functions Use the graphs of f...Ch. P.3 - Ripples A pebble is dropped into a calm pond,...Ch. P.3 - Prob. 73ECh. P.3 - Prob. 74ECh. P.3 - Think About It In Exercises 71 and 72, find the...Ch. P.3 - Prob. 76ECh. P.3 - Ever, and Odd Functions The graphs of f, g, and h...Ch. P.3 - Prob. 78ECh. P.3 - Prob. 79ECh. P.3 - Prob. 80ECh. P.3 - Prob. 81ECh. P.3 - Prob. 82ECh. P.3 - Prob. 83ECh. P.3 - Prob. 84ECh. P.3 - Prob. 85ECh. P.3 - Prob. 86ECh. P.3 - Prob. 87ECh. P.3 - Prob. 88ECh. P.3 - Prob. 89ECh. P.3 - Prob. 90ECh. P.3 - Domain Find the value of c such that the domain of...Ch. P.3 - Domain Find all values of c such that the domain...Ch. P.3 - Graphical Reasoning An electronically controlled...Ch. P.3 - HOW DO YOU SEE IT? Water runs into a vase of...Ch. P.3 - Prob. 96ECh. P.3 - Prob. 95ECh. P.3 - Prob. 97ECh. P.3 - Prob. 98ECh. P.3 - Proof Prove that the function is odd...Ch. P.3 - Proof Prove that the function is even....Ch. P.3 - Prob. 101ECh. P.3 - Prob. 102ECh. P.3 - Length A right triangle is formed in the first...Ch. P.3 - Volume An open box of maximum volume is to be made...Ch. P.3 - Prob. 105ECh. P.3 - Prob. 106ECh. P.3 - Prob. 107ECh. P.3 - Prob. 108ECh. P.3 - Prob. 109ECh. P.3 - Prob. 110ECh. P.3 - Prob. 111ECh. P.3 - Prob. 112ECh. P.4 - Prob. 1ECh. P.4 - Prob. 2ECh. P.4 - Hooke's Law Hookes Law states that the force F...Ch. P.4 - Prob. 4ECh. P.4 - Prob. 5ECh. P.4 - Prob. 6ECh. P.4 - Beam Strength Students in a lab measured the...Ch. P.4 - Car Performance The time t (in seconds) required...Ch. P.4 - Engine Performance A V8 car engine is coupled to a...Ch. P.4 - Boiling Temperature The table shows the...Ch. P.4 - Prob. 11ECh. P.4 - Prob. 12ECh. P.4 - Harmonic Motion The motion of an oscillating...Ch. P.4 - Temperature The table shows the normal daily high...Ch. P.4 - Prob. 15ECh. P.4 - Prob. 16ECh. P.4 - PUTNAM EXAM CHALLENGE For i = 1,2, let Ti be a...Ch. P - Finding Intercepts In Exercises 1-4, find any...Ch. P - Finding Intercepts In Exercises 1-4, find any...Ch. P - Finding Intercepts In Exercises 1-4, find any...Ch. P - Prob. 4RECh. P - Prob. 5RECh. P - Prob. 6RECh. P - Prob. 7RECh. P - Prob. 8RECh. P - Prob. 9RECh. P - Prob. 10RECh. P - Prob. 11RECh. P - Prob. 12RECh. P - Prob. 13RECh. P - Prob. 14RECh. P - Prob. 15RECh. P - Prob. 16RECh. P - Prob. 17RECh. P - Prob. 18RECh. P - Prob. 19RECh. P - Prob. 20RECh. P - Prob. 21RECh. P - Prob. 22RECh. P - Prob. 23RECh. P - Prob. 24RECh. P - Prob. 25RECh. P - Prob. 26RECh. P - Prob. 27RECh. P - Sketching a Line in the Plane In Exercises 27-30,...Ch. P - Prob. 29RECh. P - Prob. 30RECh. P - Finding Equations of Lines Find equations of the...Ch. P - Prob. 32RECh. P - Rate of Change The purchase price of a new machine...Ch. P - Break-Even Analysis A contractor purchases a piece...Ch. P - Prob. 35RECh. P - Prob. 36RECh. P - Evaluating a Function In Exercises 37-40, evaluate...Ch. P - Prob. 38RECh. P - Prob. 39RECh. P - Prob. 40RECh. P - Prob. 41RECh. P - Prob. 42RECh. P - Prob. 43RECh. P - Prob. 44RECh. P - Prob. 45RECh. P - Prob. 46RECh. P - Transformations of Functions Use a graphing...Ch. P - Conjecture (a) Use a graphing utility to graph the...Ch. P - Prob. 49RECh. P - Think About It What is the minimum degree of the...Ch. P - Prob. 51RECh. P - Median Income The data in the table show the...Ch. P - Prob. 53RECh. P - Prob. 1PSCh. P - Finding Tangent Lines There are two tangent lines...Ch. P - Heaviside Function The Heaviside function H(x) is...Ch. P - Sketching Transformations Consider the graph of...Ch. P - Prob. 5PSCh. P - Prob. 6PSCh. P - Prob. 7PSCh. P - Prob. 8PSCh. P - Slope of a Tangent Line One of the fundamental...Ch. P - Slope of a Tangent Line Sketch the graph of the...Ch. P - Prob. 11PSCh. P - Graphing an Equation Explain how you would graph...Ch. P - Sound Intensity A large room contains two speakers...Ch. P - Sound Intensity Suppose the speakers in Exercise...Ch. P - Lemniscate Let d1 and d2 be the distances from the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning

Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill




Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY