Single Variable Calculus: Concepts and Contexts, Enhanced Edition
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
4th Edition
ISBN: 9781337687805
Author: James Stewart
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter F, Problem 41E

Evaluate each telescoping sum.

  1. (a) i = 1 n [ i 4 ( i 1 ) 4 ]
  2. (b) i = 1 100 ( 5 i 5 i 1 )
  3. (c) i = 3 99 ( 1 i 1 i + 1 )
  4. (d) i = 1 n ( a i a i 1 )

(a)

Expert Solution
Check Mark
To determine

To find: The value of the telescoping sum i=1n[i4(i1)4].

Answer to Problem 41E

The value of the telescoping sum i=1n[i4(i1)4] is n4.

Explanation of Solution

Simplify the expression i=1n[i4(i1)4] and obtain the value of the sum.

i=1n[i4(i1)4]=(1404)+(2414)+(3424)++(n4(n1)4)=n404=n4

Thus, the value of the telescoping sum i=1n[i4(i1)4] is n4.

(b)

Expert Solution
Check Mark
To determine

To find: The value of the telescoping sum i=1100[5i5i1].

Answer to Problem 41E

The value of the telescoping sum i=1100[5i5i1] is 51001.

Explanation of Solution

Simplify the expression i=1100[5i5i1] and obtain the value of the sum.

i=1100[5i5i1]=(51511)+(52521)+(53531)++(510051001)=(5150)+(5251)+(5352)++(5100599)=510050=51001

Thus, the value of the telescoping sum i=1100[5i5i1] is 51001.

(c)

Expert Solution
Check Mark
To determine

To find: The value of the telescoping sum i=399[1i1i+1].

Answer to Problem 41E

The value of the telescoping sum i=399[1i1i+1] is 97100.

Explanation of Solution

Simplify the expression i=399[1i1i+1] and obtain the value of the sum.

i=399[1i1i+1]=(1313+1)+(1414+1)+(1515+1)++(199199+1)=(1314)+(1415)+(1516)++(1991100)=131100=97100

Thus, the value of the telescoping sum i=399[1i1i+1] is 97100.

(d)

Expert Solution
Check Mark
To determine

To find: The value of the telescoping sum i=1n(aiai1).

Answer to Problem 41E

The value of the telescoping sum i=1n(aiai1) is ana0.

Explanation of Solution

Simplify the expression i=3n(aiai1) and obtain the value of the sum.

i=1n(aiai1)=(a1a11)+(a2a21)+(a3a31)++(anan1)=(a1a0)+(a2a1)+(a3a2)++(anan1)=ana0

Thus, the value of the telescoping sum i=1n(aiai1) is ana0.

Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Sequences and Series Introduction; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=m5Yn4BdpOV0;License: Standard YouTube License, CC-BY
Introduction to sequences; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=VG9ft4_dK24;License: Standard YouTube License, CC-BY