
Developmental Mathematics (9th Edition)
9th Edition
ISBN: 9780321997173
Author: Marvin L. Bittinger, Judith A. Beecher
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter F, Problem 1DE
To determine
To calculate: The factor of
Expert Solution & Answer

Answer to Problem 1DE
Solution:
The factor of
Explanation of Solution
Given Information:
The expression,
Formula used:
The difference of the two expressions that are cubes denoted by
Calculation:
Consider the expression,
As the difference of the two expressions that are cubes denoted by
Here,
So,
Thus, put the values in
Thus, it becomes,
Hence, the factor of
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Remix
4. Direction Fields/Phase Portraits. Use the given direction fields to plot solution curves
to each of the given initial value problems.
(a)
x = x+2y
1111
y = -3x+y
with x(0) = 1, y(0) = -1
(b) Consider the initial value problem corresponding to the given phase portrait.
x = y
y' = 3x + 2y
Draw two "straight line solutions"
passing through (0,0)
(c) Make guesses for the equations of the straight line solutions: y = ax.
It was homework
No chatgpt pls will upvote
Chapter F Solutions
Developmental Mathematics (9th Edition)
Ch. F - Prob. 1DECh. F - Prob. 2DECh. F - Prob. 3DECh. F - Prob. 4DECh. F - Prob. 5DECh. F - Prob. 6DECh. F - Prob. 7DECh. F - Prob. 8DECh. F - Prob. 9DECh. F - Prob. 10DE
Ch. F - Prob. 1ESCh. F - Prob. 2ESCh. F - Prob. 3ESCh. F - Prob. 4ESCh. F - Prob. 5ESCh. F - Prob. 6ESCh. F - Prob. 7ESCh. F - Prob. 8ESCh. F - Prob. 9ESCh. F - Prob. 10ESCh. F - Prob. 11ESCh. F - Prob. 12ESCh. F - Prob. 13ESCh. F - Prob. 14ESCh. F - Prob. 15ESCh. F - Prob. 16ESCh. F - Prob. 17ESCh. F - Prob. 18ESCh. F - Prob. 19ESCh. F - Prob. 20ESCh. F - Prob. 21ESCh. F - Prob. 22ESCh. F - Prob. 23ESCh. F - Prob. 24ESCh. F - Prob. 25ESCh. F - Prob. 26ESCh. F - Prob. 27ESCh. F - Prob. 28ESCh. F - Prob. 29ESCh. F - Prob. 30ESCh. F - Prob. 31ESCh. F - Prob. 32ESCh. F - Prob. 33ESCh. F - Prob. 34ESCh. F - Prob. 35ESCh. F - Prob. 36ESCh. F - Prob. 37ESCh. F - Prob. 38ESCh. F - Prob. 39ESCh. F - Prob. 40ESCh. F - Prob. 41ESCh. F - Prob. 42ESCh. F - Prob. 43ESCh. F - Prob. 44ESCh. F - Prob. 45ESCh. F - Prob. 46ESCh. F - Prob. 47ESCh. F - Prob. 48ESCh. F - Prob. 49ESCh. F - Prob. 50ES
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- (7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz). Ꮖ (a) (4 points) Show that V x F = 0. (b) (4 points) Find a potential f for the vector field F. (c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use Stokes' Theorem to calculate the line integral Jos F.ds; as denotes the boundary of S. Explain your answer.arrow_forward(3) (16 points) Consider z = uv, u = x+y, v=x-y. (a) (4 points) Express z in the form z = fog where g: R² R² and f: R² → R. (b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate steps otherwise no credit. (c) (4 points) Let S be the surface parametrized by T(x, y) = (x, y, ƒ (g(x, y)) (x, y) = R². Give a parametric description of the tangent plane to S at the point p = T(x, y). (d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic approximation) of F = (fog) at a point (a, b). Verify that Q(x,y) F(a+x,b+y). =arrow_forward(6) (8 points) Change the order of integration and evaluate (z +4ry)drdy . So S√ ² 0arrow_forward
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forwardAnswer the following questions related to the following matrix A = 3 ³).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage


Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell


Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Whiteboard Math: The Basics of Factoring; Author: Whiteboard Math;https://www.youtube.com/watch?v=-VKAYqzRp4o;License: Standard YouTube License, CC-BY
Factorisation using Algebraic Identities | Algebra | Mathacademy; Author: Mathacademy;https://www.youtube.com/watch?v=BEp1PaU-qEw;License: Standard YouTube License, CC-BY
How To Factor Polynomials The Easy Way!; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=U6FndtdgpcA;License: Standard Youtube License