FIN 108 ISU LOOSE >IP<
17th Edition
ISBN: 9781323520192
Author: Pearson
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter DPT, Problem 37E
In Problems 37 and 38, factor completely.
37.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Exercice 2:
Soit & l'ensemble des nombres réels.
Partie A
Soit g la fonction définie et dérivable sur R telle que, pour tout réel x. g(x) = - 2x ^ 3 + x ^ 2 - 1
1. a) Étudier les variations de la fonction g
b) Déterminer les limites de la fonction gen -oo et en +00.
2. Démontrer que l'équation g(x) = 0 admet une unique solution dans R, notée a, et que a appartient à | - 1 ;0|.
3. En déduire le signe de g sur R.
Partie B
Soit ƒ la fonction définie et dérivable sur R telle que, pour tout réel s. f(x) = (1 + x + x ^ 2 + x ^ 3) * e ^ (- 2x + 1) On note f la fonction dérivée de la fonction ƒ sur R.
1. Démontrer que lim x -> ∞ f(x) = - ∞
2. a) Démontrer que, pour tout x > 1
1 < x < x ^ 2 < x ^ 3
b) En déduire que, pour x > 1
0 < f(x) < 4x ^ 3 * e ^ (- 2x + 1)
c) On admet que, pour tout entier naturel n. lim x -> ∞ x ^ n * e ^ (- x) = 0 Vérifier que, pour tout réel x, 4x ^ 3 * e ^ (- 2x + 1) = e/2 * (2x) ^ 3 * e ^ (-2x) puis montrer que: lim x -> ∞ 4x ^ 3 * e…
show me pass-to-pass
show me please
Chapter DPT Solutions
FIN 108 ISU LOOSE >IP<
Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...
Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Work all of the problems in this self-test without...Ch. DPT - Give an example of an integer that is not a...Ch. DPT - Prob. 17ECh. DPT - Prob. 18ECh. DPT - Prob. 19ECh. DPT - Prob. 20ECh. DPT - Prob. 21ECh. DPT - In Problems 1724, simplify and write answers using...Ch. DPT - Prob. 23ECh. DPT - Prob. 24ECh. DPT - In Problems 2530, perform the indicated operation...Ch. DPT - In Problems 2530, perform the indicated operation...Ch. DPT - In Problems 2530, perform the indicated operation...Ch. DPT - Prob. 28ECh. DPT - In Problems 2530, perform the indicated operation...Ch. DPT - In Problems 2530, perform the indicated operation...Ch. DPT - Each statement illustrates the use of one of the...Ch. DPT - Round to the nearest integer: (A)173 (B)519Ch. DPT - Multiplying a number x by 4 gives the same result...Ch. DPT - Find the slope of the line that contains the...Ch. DPT - Find the x and y coordinates of the point at which...Ch. DPT - Find the x and y coordinates of the point at which...Ch. DPT - In Problems 37 and 38, factor completely....Ch. DPT - In Problems 37 and 38, factor completely....Ch. DPT - In Problems 3942, write in the form axp + byq...Ch. DPT - Prob. 40ECh. DPT - Prob. 41ECh. DPT - In Problems 3942, write in the form axp + byq...Ch. DPT - Prob. 43ECh. DPT - Prob. 44ECh. DPT - In Problems 4550, solve for x. 45.x2=5xCh. DPT - In Problems 4550, solve for x. 46.3x221=0Ch. DPT - In Problems 4550, solve for x. 47.x2x20=0Ch. DPT - In Problems 4550, solve for x. 48.6x2+7x1=0Ch. DPT - In Problems 4550, solve for x. 49.x2+2x1=0Ch. DPT - In Problems 4550, solve for x. 50.x46x2+5=0
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Show me pass-to-passarrow_forwardPlease explain the pass-to-passarrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Automobile Department Subject :Engineering Analysis Time: 2 hour Date:27-11-2022 کورس اول تحليلات تعمیر ) 1st month exam / 1st semester (2022-2023)/11/27 Note: Answer all questions,all questions have same degree. Q1/: Find the following for three only. 1- 4s C-1 (+2-3)2 (219) 3.0 (6+1)) (+3+5) (82+28-3),2- ,3- 2-1 4- Q2/:Determine the Laplace transform of the function t sint. Q3/: Find the Laplace transform of 1, 0≤t<2, -2t+1, 2≤t<3, f(t) = 3t, t-1, 3≤t 5, t≥ 5 Q4: Find the Fourier series corresponding to the function 0 -5arrow_forwardQ1lal Let X be an arbitrary infinite set and let r the family of all subsets F of X which do not contain a particular point x, EX and the complements F of all finite subsets F of X show that (X.r) is a topology. bl The nbhd system N(x) at x in a topological space X has the following properties NO- N(x) for any xX N1- If N EN(x) then x€N N2- If NEN(x), NCM then MeN(x) N3- If NEN(x), MEN(x) then NOMEN(x) N4- If N = N(x) then 3M = N(x) such that MCN then MeN(y) for any уем Show that there exist a unique topology τ on X. Q2\a\let (X,r) be the topology space and BST show that ẞ is base for a topology on X iff for any G open set xEG then there exist A Eẞ such that x E ACG. b\Let ẞ is a collection of open sets in X show that is base for a topology on X iff for each xex the collection B, (BEB\xEB) is is a nbhd base at x. - Q31 Choose only two: al Let A be a subspace of a space X show that FCA is closed iff F KOA, K is closed set in X. الرياضيات b\ Let X and Y be two topological space and f:X -…arrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Automobile Department Subject :Engineering Analysis Time: 2 hour Date:27-11-2022 کورس اول تحليلات تعمیر ) 1st month exam / 1st semester (2022-2023)/11/27 Note: Answer all questions,all questions have same degree. Q1/: Find the following for three only. 1- 4s C-1 (+2-3)2 (219) 3.0 (6+1)) (+3+5) (82+28-3),2- ,3- 2-1 4- Q2/:Determine the Laplace transform of the function t sint. Q3/: Find the Laplace transform of 1, 0≤t<2, -2t+1, 2≤t<3, f(t) = 3t, t-1, 3≤t 5, t≥ 5 Q4: Find the Fourier series corresponding to the function 0 -5arrow_forwardSHU Pra S × (29 (29 Ful SH Fre SH Stu 1b | Stu M De rea Ma tea Tea | b An | filo Tea | filo Filo SH + OXFORD C talentcentral.eu.shl.com/player/testdriver/launch?s=61B06D43-1AC3-4353-8210-9DF5644C9747&from Launch=true ☆ V My Profile → Exit SHL Help▾ 09:21 Community Service Schedule Team A: 4 people Team B: 6 people Team C: 8 people 9 10 11 12 1 2 3 4 5 6 Question You are organizing a community service event today. At least 6 people must be working the event between 10 a.m.5 p.m. (the event is closed for an hour lunch break beginning at 12:00 p.m.). Schedule Team D to ensure adequate coverage throughout the day. Team D: 4 people 9 10 11 12 1 2 3 4 5 LQ Next 6 © 2025 SHL and/or its affiliates. All rights reserved.arrow_forwardQ1\ Let X be a topological space and let Int be the interior operation defined on P(X) such that 1₁.Int(X) = X 12. Int (A) CA for each A = P(X) 13. Int (int (A) = Int (A) for each A = P(X) 14. Int (An B) = Int(A) n Int (B) for each A, B = P(X) 15. A is open iff Int (A) = A Show that there exist a unique topology T on X. Q2\ Let X be a topological space and suppose that a nbhd base has been fixed at each x E X and A SCX show that A open iff A contains a basic nbdh of each its point Q3\ Let X be a topological space and and A CX show that A closed set iff every limit point of A is in A. A'S A ACA Q4\ If ẞ is a collection of open sets in X show that ẞ is a base for a topology on X iff for each x E X then ẞx = {BE B|x E B} is a nbhd base at x. Q5\ If A subspace of a topological space X, if x Є A show that V is nbhd of x in A iff V = Un A where U is nbdh of x in X.arrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Subject :Engineering Analysis Time: 80 min Date:11-12-2022 Automobile Department 2nd month exam / 1" semester (2022-2023) Note: Answer all questions,all questions have same degree. کورس اول شعر 3 Q1/: Use a Power series to solve the differential equation: y" - xy = 0 Q2/:Evaluate using Cauchy's residue theorem, sinnz²+cosz² dz, where C is z = 3 (z-1)(z-2) Q3/:Evaluate dz (z²+4)2 Where C is the circle /z-i/-2,using Cauchy's residue theorem. Examiner: Dr. Wisam N. Hassanarrow_forwardMinistry of Higher Education & Scientific Research Babylon University College of Engineering - Al musayab Subject :Engineering Analysis Time: 80 min Date:11-12-2022 Automobile Department 2nd month exam / 1" semester (2022-2023) Note: Answer all questions,all questions have same degree. کورس اول شعر 3 Q1/: Use a Power series to solve the differential equation: y" - xy = 0 Q2/:Evaluate using Cauchy's residue theorem, sinnz²+cosz² dz, where C is z = 3 (z-1)(z-2) Q3/:Evaluate dz (z²+4)2 Where C is the circle /z-i/-2,using Cauchy's residue theorem. Examiner: Dr. Wisam N. Hassanarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Whiteboard Math: The Basics of Factoring; Author: Whiteboard Math;https://www.youtube.com/watch?v=-VKAYqzRp4o;License: Standard YouTube License, CC-BY
Factorisation using Algebraic Identities | Algebra | Mathacademy; Author: Mathacademy;https://www.youtube.com/watch?v=BEp1PaU-qEw;License: Standard YouTube License, CC-BY
How To Factor Polynomials The Easy Way!; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=U6FndtdgpcA;License: Standard Youtube License